
Summary

Various designs of nonautomatic electronic weighing
instruments are employed with very different numbers
of scale intervals. This paper introduces a new method-
ology which can be implemented in all designs and most
specifically in single-range, multiple-range and multi-
interval instruments.

This study is intended to serve the needs of users of
weighing instruments who require confirmation of the
accuracy of the weight values. The criteria to be satisfied
are:

J Traceability to a national standard;
J Statement of uncertainty for the indicated (net

weight) values without correction of systematic
deviations; confidence level at least 95 % according
to EAL-R2; and

J Consideration of the environmental conditions on
the site at which the weighing is used during meas-
urements.

1 Introduction

The proposed methodology aims at calculating the total
uncertainty of the weighing instrument. More specific-
ally, the total uncertainty is a function of both the
random (precision) and the systematic (bias) uncer-
tainty. 

Considering a sub-case in which the random and the
systematic uncertainties are not independent, the total
uncertainty is the algebraic sum of the above-mentioned
uncertainties.

The total uncertainty is based on the following
parameters:

1 Repeatability
2 Resolution
3 Eccentricity
4 Deviations of indication - Linearity
5 Drift of instruments
6 Effect of convection
7 Standards weights and density of air
8 Hysteresis

2 Repeatability

The instrument should be set to zero before each meas-
urement. The load should be placed on-center. A one-
piece test load should preferably be used. For single-
range instruments, the test load P, should be equal to
Max/2. For multiple-range instruments, 

P = Maxi + (Maxi+1 – Maxi)/2.

The standard deviation, s, is calculated from the
weight values, using:

(1)

with

(2)

The standard uncertainty of the repeatability is
calculated from:

uw
2 = s2 (3)

3 Resolution

The standard uncertainty of the resolution error of the
indication, I, for diverse scale intervals di in multiple-
range instruments is given by:

(4)

For single-range instruments, the variance of the
rounding error is:
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(5)

The assumption is that the distribution is rectangular. According to the rectangular distribution, the base is d and
the height is 1/d.

4 Eccentric loading

The test load is applied at the positions shown below, which mark the center of gravity of the load for the appropriate
measurement.

Central measurement e1 = 0
Front left measurement e2
Back left measurement e3
Back right measurement e4
Front right measurement e5

After the first measurement, tare setting may be done when the instrument is loaded. A one-piece test load should
preferably be used. For single-range instruments, the test load, P, should be equal to Max/2. For multiple-range
instruments, P = Maxi + (Maxi+1 – Maxi)/2.

4.1 Distribution of off-center load

An a-priori distribution is proposed, according to Figure 1.

Fig. 1 A-priori distribution for eccentricity (at the center of the pan the density of probability 
is higher compared to out of center areas)

E* = the greatest positive difference between off-center and central loading indications

E* = max (e1, e2, e3, e4, e5) (6)

– e = the smallest negative difference between off-center and central loading indications

– e = min (e1, e2, e3, e4, e5) (7)

h1 = κ h2 (8)
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(9)

(10)

(11)

x– = mean average of the distribution

(12)

Eecc = the maximum value between E* and e

σ2 = θ · Eecc
2 (13)

κ = (– 5) · ζ + 25 (14)

(15)

For E* = e ⇒ symmetric distribution
and for κ =1 ⇒ θ = 1/3: rectangular A-priori distribution
and for κ → ∞ ⇒ θ = 1/6: triangular A-priori distribution

E1ecc = (1/2) · (1/λ2) ·Eecc · λ = Eecc/(2·λ) (16)

With λ = Pe / Max

The variance vecc is given by:

vecc = θ · (E1ecc/Max)2 = θ · [Eecc/(2 · λ · Max)]2 = θ · [Eecc/(2 · Pe)]
2 (17)

The standard uncertainty of eccentricity is given by:

uecc
2 = vecc · I

2 (18)

According to the assumption: I ≅ mc

5 Deviation of indication (Linearity)

5.1 Conventional weighing indication value

For the calculation of the error of indication, a new term is introduced: the conventional weighing indication value
mc*, which is equal to the mass of a weight piece having a density ρc = 8000 [kg/m3] at air density ρα0 = 1,2 [kg/m3],
and has the same weighing indication of a mass m having a density ρk at air density ρα.
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E = I – mc* (19)
E = Deviation of measurement 
I = Indication of measurement 
mc*  = conventional indication value of standard weight 

(20)

and m = mc · 0,99985 · ρk /(ρk – 1,2) (21)

In the case ρα = ρα0 ⇒ mc
* = mc

m = mass
mc = conventional value of mass of standard weight from calibration certificate
ρk = density of standard weight from calibration certificate [kg/m3]
ρα = air density [kg/m3] 
ρα0 = 1,2 [kg/m3]
ρ = 8000 [kg/m3]

5.2 Evaluation

Measurement I Conventional Conventional Indication [g] Ii – mci* = EI
value of mass value of indication Ii [g]

mci [g] mci* [g]

1 Min mc1* I1 E1

2 mc2 ≈ (1/N) · Max mc2* I2 E2

3 mc3 ≈ (2/N) · Max mc3* I3 E3 

4 mc4  mc4* I4 E4 

… … … … …  

N mcN ≈ Max mcN* IN EN 

If (I1, E1), … (IN, EN) are the measured pairs of values, they are described by the linear equation E = A + B · I, the
values Abest and Bbest result, which minimize the sum of the squares of the deviations.

(22)

(23)
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(24)

(25)

where σE is the standard deviation of the straight line Abest + Bbest · I.

Additionally, the standard uncertainty for the parameters Abest and Bbest, are: 

(26)

(27)

and the systematic uncertainty is the greatest absolute value from:

MAX | Abest + Bbest · Ii ± t95 · σlinie | (28)

where t is the unilateral confidence level, which means that for a number of measurements N,
the degree of freedom is N – 2.

(29)

(30)

with 

σε1 = σε 2 = … = σεN = σε (31)

and 

(32)

(33)

(34)

(35)

max{Nε} = N  for I = (ΣIi)/N

(36)

with σE1 = σE2 = … = σEN = σE (37)
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The calculation of the standard deviation σσEm of the average standard deviation σEm gives:

(38)

This aids in the evaluation of the standard deviation of the population through the evaluation of the standard
deviation of the sample, which means that the confidence level of 99,75 % is less than:

uE
2 = [σEm + t99,75 · σσEm]2 (39)

6 Uncertainty from drift of instruments 

Considering:

∆t = tmax – tmin + Ut/2
0,5 (40)

as the change in temperature during calibration and:

Ut = the total uncertainty of the thermometer from its calibration certificate (with 2σ) according to the assumption
Ut = Ut min ≅ Ut max

TK = the effect of temperature on the mean gradient of the characteristic in ppm/K (estimate or data information
sheet),

the variance vt of the temperature effect, is calculated from:

vt = (1/12) · [∆t · TK · 10-6/ppm]2 (41)

The assumption is that the distribution is rectangular. According to the rectangular distribution, the base is: 
[∆t · TK · 10-6/ppm] and the height: 1/[∆t · TK · 10-6/ppm]. The standard uncertainty of drift for the weighting
instrument is:

u t
2 = vt · I2 (42)

7 Effect of convection

Considering:

tair = air temperature [°C] with total uncertainty Utair (2σ)

tweights = standard weight temperature [°C] with total uncertainty Utweights (2σ)

∆tconv = tweights – tair ± [(Utair
2 + Utweights

2 )0.5]/2 (43)

The relations between any of the quantities which have been referred to: ∆tconv m are non-linear, and their values
are calculated according to the following equation - see [11]:

(44)
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In the case where ∆tconv > 0

kv = 215 ⋅ 10-9

kh = 75,4 ⋅ 10-9

While for ∆tconv < 0 

kv = 119 ⋅ 10-9

kh = 20,2 ⋅ 10-9

The standard uncertainty of the convection effect is calculated from:

(45)

8 Uncertainty from standard weights and density of air

Air temperature, relative humidity and atmospheric pressure are measured, and the greatest and smallest values
during calibration are recorded. 

Thus for an air temperature between tmin and tmax, the standard uncertainty (1σ) is:

(46)

where Ut is the total uncertainty of the thermometer from the calibration certificate (with 2σ) according to the
assumption Ut = Ut min ≅ Ut max.

The same applies to the atmospheric pressure and the relative humidity:

(47)

(48)

Over the range of environmental conditions of 600 mbar ≤ p ≤ 1100 mbar, – 20 °C ≤ t ≤ + 40 °C and hr ≤ 80 %, the
approximate formula, which deviates from the internationally recommended formula the value ∆ρa/σ α = 2·10-3, is:

(49)

where p = (pmax + pmin)/2, hr = (hrmax + hrmin)/2, t = (tmax + tmin)/2 (50)

The relative uncertainty of the CIPM formula for the density of the air without the uncertainty of the measuring
parameters, is uf /σa = 1 · 10-4 (1σ).

The standard uncertainty (1σ) of air density is:

(51)
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where:

(52)

(53)

and

(54)

In cases where ρCIPM is the calculated as a result from the CIPM formula of the density of the air, the standard
uncertainty of the density of the air can be even lower, as follows:

(55)

The standard uncertainty of the conventional indication is:

(56)

where uρk = the standard uncertainty (1σ) of the density of the standard weights [kg/m3] from the calibration
certificate.

The variable which refers to standard weights and the air density, is calculated as follows:

(57)

umc*
2 = vk · I2 (58)

According to the assumption: I ≅ mci

ΣUi = Uncertainty of the standard weight (2σ) from the calibration certificate
ΣUDi = kD · ΣUi, 1 ≤ kD ≤ 3, kD Drift, where kD is the quantitative coefficient of the drift of the standard weight
k = 2
mC0 = conventional mass from the calibration certificate of the weight ≅ Max value of weighing instrument.

9 Hysteresis

The test loads Pi , tare values TLi and indications Ii were chosen or determined as below. Total uncertainty during
unloading of the weighing instrument is the same as during loading. The calculation of random and systematic
uncertainty is similar to that in paragraph 5.

Measurement Tare values Load Conventional Conventional Indication [g] Ii – mci
* = EI

i TLi value of mass value of indication Ii [g]
mci [g] mCi

* [g]

1 ≈ Max ≈ (1/N)Max mc1 mc1
* I1 E1↓

2 ≈ Max ≈ (2/N)Max mc2 mc2
* I2 E2↓

… ≈ Max … … … … …

N–1 ≈ Max ≈ [(N–1)/N]Max mcN-1 mcN-1
* IN-1 EN-1↓

N ≈ Max ≈ Max mcN mcN
* IN EN↓
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10 Total uncertainty of measurement

The effective degrees of freedom from the Welch-Satterthwaite formula, is:

(59)

where uc is the combined standard uncertainty (1σ ). 

(60)

The coverage factor tp, is calculated according to the following formula:

(61)

where kp = 2 (62)

The uncertainty of measurement comprises type A and type B components. For multiple range instruments, the
formula is applied to each range, separately. The formula for total uncertainty (2σ ) is:

(63)

Total uncertainty during loading (↑)and unloading (↓) of the weighing instrument, is:

(64)

where stochastic parts of the systematic uncertainties are geometrically added.

11 Determination of mass

In cases where the mass mt must be calculated, considering an object with density ρt, standard uncertainty of density
uρt (1σ) and air density ραt we have measurement on the indication Wt (total uncertainty of weighing instrument Uwt)
of the weighting instrument, the mass is:

(65)

while the calculated total uncertainty of the object Ut is calculated by the formula:

(66)
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12 Examples

12.1 Single-range instrument

The instrument characteristics are: Max = 320 g, d = 0,001 g

12.2 Environmental conditions

Density of air from formula (47): ρa = 1,1502 [kg/m3]

Density of air from the CIPM formula: ρCIPM = 1,150175 [kg/m3]

(∂ ρa/ ∂p) = 0,0012 [kg/m3] / [mbar]

(∂ ρa/ ∂t) = – 0,0042 [kg/m3] / [°C]

(∂ ρa/ ∂hr) = – 9,06 · 10-5 [kg/m3] / [%]

uρa
2 = [(ρa – ρCIPM)2/12] + (1 · 10-4·ρa)

2 + [(∂ ρa/∂p) · up]2 + [(∂ ρa/∂t) · ut]
2 + [(∂ ρa/∂hr) · uhr]

2

uρa
2 = 0,01 · 10-9 + 13,23 · 10-9 + 39,55 · 10-9 + 1315,07 · 10-9 + 43,60 · 10-9

uρa
2 = 1,41 · 10-6

uρa = 0,0012 [kg/m3]

12.3 Repeatability

P = 100 g is chosen as the test load. The readings in the table at the top of page 15 were recorded.

Min Max Mean 
Total uncertainty
(of instruments)

(2σ)

Standard
uncertainty 

(1σ)

Air pressure
(mbar)

962,7 962,9 962,8 0,22 up = 0,18

Air temperature
(°C)

17,3 17,9 17,6 0,3 ut = 0,27

Relative
humidity (%)

40 43 41,5 3 uhr = 2,29
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This yields:

Standard deviation s = 0,000516 [g]

uw = s2 = 26,67 · 10-8 [g2]

12.4 Resolution

The variance of the rounding error is:

ur
2 = [(d/2) · 3-0.5]2 = d2/12 = 8,33 ·10-8 [g2]·

12.5 Eccentricity (Off-center loading)

P = 200 g was chosen as the test load. The following readings were recorded:

200,000 g, tared 0 g

e2 = 0,001 [g]

e3 = 0,000 [g]

e4 = – 0,002 [g]

e5 = 0,003 [g]

This yields:

e = 0,002 [g]

E* = 0,003 [g]

ζ = 2

κ = 15

σecc
2 = 1,187 · 10-6

Eecc = 0,003 [g]

θ = 0,132

vecc = 7,42 · 10-12

uecc
2 = vecc · I2 

Measurement i Indication [g]

1 100,000

2 100,001

3 100,000

4 100,000

5 100,000

6 100,001
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12.6 Deviation of indication (Linearity)

The test loads and indications, Ii, were chosen or determined as follows:

Measurement Conventional Conventional Indication [g] Ii – mci* = EI
i value of mass value of indication Ii [g]

mci [g] mCi* [g]

1 0,02001 0,02001 0,020 0,0000

2 39,99997 40,00022 40,000 – 0,0002

3 80,00012 80,00062 80,000 – 0,0006

4 120,00012 120,00087 120,000 – 0,0009

5 160,00016 160,00116 160,000 – 0,0012

6 200,00018 200,00143 200,000 – 0,0014

7 240,00020 240,00169 240,000 – 0,0017

8 280,00030 280,00204 280,001 – 0,0010

9 320,00030 320,00229 320,001 – 0,0013

Standards weights of class E2 with density ρki = 8000 [kg/m3] and standard uncertainty of density 
uρki [1σ] = 100 [kg/m3], are selected.

Abest = – 0,00024 [g] Bbest = – 4,30·10-6 [g/g] ∆ = 863947,44 [g2]

σE
2 = 10,07 · 10-8 [g2] σ Α

2 = 3,81 · 10-8 [g2] σ B
2 = 1,05 · 10-12 [g2/g2]

The systematic error is the greatest absolute value from:

MAX | Abest + Bbest · Ii ± (t95/Nε
1/2) · [σA

2 + I2 σB
2 ] 0,5 | =

= 0,00024 + (4,30 · 10-6) · I + (1,89/Nε
1/2) · [3,81 · 10-8 + (1,05 · 10-12) · I2] 0,5

where t95 corresponds to a unilateral confidence level of 95 % (see DIN1319-3).

Fig. 2 Relationship between Nε and indication (max = N for I = (ΣIi)/N)

N
εε

Net display with increasing load [g]
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12.7 Uncertainty from drift of instruments

∆t = tmax – tmin + Ut/2
0,5 = 0,81 [°C] TK = 2 ppm

vTK = (1/12) · [∆t · TK · 10-6/ppm]2 = 0,22 · 10-12 uTK
2 = vTK · I2

12.8 Effect of convection 

∆tconv = (tweights – tair ) + [(Utair
2 + Utweights

2 )0,5]/2 = (20,4 – 17,5) + [(0,32 + 0,22)0,5]/2 = 3,08 [°C]

12.9 Uncertainty from standard weights and density of air

umc*
2 = vk · I2 kD = 1,5 k = 2 

ΣUi = 0,175 [mg] = 0,000175[g] ΣUi = 0,0002625 [g]

vk = 0,20 · 10-12

12.10 Total uncertainty

The total uncertainty is calculated according to the following formula:

U = tp ⋅ {26,67 ⋅ 10-8 + 8,33 ⋅ 10-8 + 7,42 ⋅ 10-12 ⋅ I2 +
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Test Distribution fd I = 320 [g] I = 160 [g] I = 80 [g]

u2[1σ][g2] 100*ui /uc u2[1σ][g2] 100*ui / uc u2[1σ][g2] 100*ui / uc

Repeatability Student 5 26,67 · 10-8 45,0 % 26,67 · 10-8 66,7 % 26,67 · 10-8 74,7 %

Resolution Rectangular ∞ 8,33 · 10-8 25,1 % 8,33 · 10-8 37,3 % 8,33 · 10-8 41,8 %

Eccentricity “New” ∞ 75,97 · 10-8 75,9 % 18,99 · 10-8 56,3 % 4,74 · 10-8 31,5 %

Deviations of Gaussian ∞ 16,46 · 10-8 35,3 % 4,84 · 10-8 28,4 % 7,75 · 10-8 40,3 %

indication-linearity

Uncertainty from Rectangular ∞ 2,25 · 10-8 13,1 % 0,56 · 10-8 9,7 % 0,14 · 10-8 5,4 %

drift of instruments

Effect of convection Rectangular ∞ 0,10 · 10-8 2,8 % 0,03 · 10-8 2,2 % 0,01 · 10-8 1,3 %

Uncertainty from 

standard weights and Gaussian ∞ 2,01 · 10-8 12,4 % 0,50 · 10-8 9,2 % 0,13 · 10-8 5,1 %

density of air

131,80 · 10-8 59,93 · 10-8 47,77 · 10-8

uc 1,15 · 10-3 0,77 · 10-3 0,69 · 10-3

tp(v) 2,020 2,078 2,121

Random uncertainty 2,31 · 10-3 g 1,61 · 10-3 g 1,47 · 10-3 g

Systematic uncertainty 2,06 · 10-3 g 1,09 · 10-3 g 0,75 · 10-3 g

Total uncertainty 0,0044 g 0,0027 g 0,0022 g

The total uncertainty using the approximate formula is: 

Utotal = (– 1 ⋅ 10-13) ⋅ I4 + (6 ⋅ 10-11) ⋅ I3 + (8 ⋅ 10-9) ⋅ I2 + (2 ⋅ 10-6) ⋅ I + 0,0002

with R2 = 1

Fig. 3 Relationship between indication and uncertainties

12.11 Uncertainty budget

Net display with increasing load [g]
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13 Conclusions

A new a-priori distribution has been introduced for eccentricity, where the coefficient κ is determined according to
the characteristics of eccentric loading, for each weighing instrument.

The minimum value of random uncertainty is not found for I = 0 (in the paradigm of the current paper the
minimum value is found for I = 59 g). As “N” increases the minimum random uncertainty takes a smaller value and
this minimum is transferred to higher indications.

The formulation of the systematic error as Abest + Bbest I, gives the most probable value of the population but not
for a confidence level of at least 95 %. Additionally, the formulation:

determines the highest level, so that a statistic hypothesis can be made that the systematic uncertainty of the
population with a possibility of 95 % is smaller than the aforementioned highest limit.

The population is defined as the number of scale intervals, the quotient Maxi /di of the maximum capacity of each
partial range and the appropriate scale interval (at this article’s paradigm it is considered as 320 000). K
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