CALBRATION

Calibration of electronic nonautomatic weighing instruments - Error analysis

Paschalis Tsimitras, Kilkis, Greece

Summary

Various designs of nonautomatic electronic weighing instruments are employed with very different numbers of scale intervals. This paper introduces a new methodology which can beimplemented in all designs and most specifically in singlerange, multiplerange and multiinterval instruments.

This study is intended to serve the needs of users of weighing instruments who require confirmation of the accuracy of the weight values. The criteria to be satisfied are:

- Traceability to a national standard;
- Statement of uncertainty for the indicated (net weight) values without correction of systematic deviations; confidence level at least 95% according to EAL-R2; and
- Consideration of the environmental conditions on the site at which the weighing is used during measurements.

1 Introduction

The proposed methodology aims at calculating the total uncertainty of the weighing instrument. More specifically, the total uncertainty is a function of both the random (precision) and the systematic (bias) uncertainty.

Considering a sub-case in which the random and the systematic uncertainties are not independent, the total uncertainty is the algebraic sum of the above-mentioned uncertainties.

The total uncertainty is based on the following parameters:

1 Repeatability
2 Resolution
3 Eccentricity
4 Deviations of indication - Linearity
5 Drift of instruments
6 Effect of convection
7 Standards weights and density of air
8 Hysteresis

2 Repeatability

The instrument should be set to zero before each measurement. The load should be placed on-center. A one piece test load should preferably be used. For single range instruments, the test load P, should be equal to Max/2. For multiplerange instruments,
$P=$ Max $_{i}+\left(\right.$ Max $_{i+1}-$ Max $\left._{i}\right) / 2$.
The standard deviation, s , is calculated from the weight values, using:
$s=\sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(I_{i}-\bar{I}\right)^{2}}$
with
$\bar{I}=\frac{1}{n} \cdot \sum_{i=1}^{n} I_{i}$

The standard uncertainty of the repeatability is calculated from:
$u_{w}^{2}=s^{2}$

3 Resolution

The standard uncertainty of the resolution error of the indication, I, for diverse scale intervals d_{i} in multiplerange instruments is given by:
$u_{r}{ }^{2}=\left(\frac{d_{i}}{2 \cdot \sqrt{3}}\right)^{2}=\frac{d_{i}{ }^{2}}{12}$

For singlerange instruments, the variance of the rounding error is:
$u_{r}{ }^{2}=\left(\frac{d}{2 \cdot \sqrt{3}}\right)^{2}=\frac{d^{2}}{12}$
The assumption is that the distribution is rectangular. According to the rectangular distribution, the base is d and the height is $1 / \mathrm{d}$.

4 Eccentric loading

The test load is applied at the positions shown below, which mark the center of gravity of the load for the appropriate measurement.

Central measurement $e_{1}=0$
Front left measurement e
Back left measurement $\quad e_{3}$
Back right measurement e_{4}
Front right measurement e_{5}

After the first measurement, tare setting may be done when the instrument is loaded. A one-piece test load should preferably be used. For single-range instruments, the test load, P , should be equal to $\mathrm{Max} / 2$. For multiple-range instruments, $\mathrm{P}=\mathrm{Max}_{\mathrm{i}}+\left(\mathrm{Max}_{\mathrm{i}+1}-\mathrm{Max}_{\mathrm{i}}\right) / 2$.

4.1 Distribution of off-center load

An a-priori distribution is proposed, according to Figure 1.

Fig. 1 A-priori distribution for eccentricity (at the center of the pan the density of probability
is higher compared to out of center areas)
$E^{*}=$ the greatest positive difference between off-center and central loading indications
$E^{*}=\max \left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right)$

- e = the smallest negative difference between off-center and central loading indications
$-\mathrm{e}=\min \left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}\right)$
$h_{1}=\kappa h_{2}$
$\left(E^{*}+e\right) \cdot h_{2}+\frac{1}{2} \cdot\left(E^{*}+e\right) \cdot\left(h_{1}-h_{2}\right)=1 \Rightarrow h_{2}=\frac{2}{\left(E^{*}+e\right) \cdot(\kappa+1)}$
$\int_{-\infty}^{\infty} x^{2} \cdot f(x) \cdot d x=\int_{-e}^{E^{*}} x^{2} \cdot f(x) \cdot d x=\int_{-e}^{0} x^{2} \cdot\left(\frac{h_{1}-h_{2}}{e} \cdot x+h_{1}\right) \cdot d x+\int_{0}^{E^{*}} x^{2} \cdot\left(\frac{h_{2}-h_{1}}{E^{*}} \cdot x+h_{1}\right) \cdot d x=\frac{\kappa+3}{6 \cdot(\kappa+1)} \cdot\left(e^{2}-E^{*} \cdot e+E^{* 2}\right)$
$\bar{x}=\int_{-\infty}^{\infty} x \cdot f(x) \cdot d x=\int_{-e}^{E^{*}} x \cdot f(x) \cdot d x=\int_{-e}^{0} x \cdot\left(\frac{h_{1}-h_{2}}{e} \cdot x+h_{1}\right) \cdot d x+\int_{0}^{E^{*}} x \cdot\left(\frac{h_{2}-h_{1}}{E^{*}} \cdot x+h_{1}\right) \cdot d x=\frac{\kappa+2}{(\kappa+1) \cdot 3} \cdot\left(E^{*}-e\right)$
$\bar{x}=$ mean average of the distribution
$\sigma_{e c c}^{2}=\int_{-\infty}^{\infty}(x-\bar{x})^{2} \cdot f(x) \cdot d x=\int_{-e}^{E^{*}} x^{2} \cdot f(x) \cdot d x-\bar{x}^{2}=\frac{\kappa+3}{(\kappa+1) \cdot 6}\left(e^{2}-e \cdot E^{*}+E^{* 2}\right)-\left[\frac{\kappa+2}{(\kappa+1) \cdot 3}\left(E^{*}-\varepsilon\right)\right]^{2}$
$E_{\text {ecc }}=$ the maximum value between E^{*} and e
$\sigma^{2}=\theta \cdot \mathrm{E}_{\text {ecc }}{ }^{2}$
$\kappa=(-5) \cdot \zeta+25$
$\zeta=\frac{\left|e_{2}\right|+\left|e_{3}\right|+\left|e_{4}\right|+\left|e_{5}\right|}{E_{\text {ecc }}}$

For $\mathrm{E}^{*}=\mathrm{e} \Rightarrow$ symmetric distribution
and for $\kappa=1 \Rightarrow \theta=1 / 3$: rectangular A-priori distribution
and for $\kappa \rightarrow \infty \Rightarrow \theta=1 / 6$: triangular A-priori distribution
$E_{\text {lecc }}=(1 / 2) \cdot\left(1 / \lambda^{2}\right) \cdot E_{\text {ecc }} \cdot \lambda=E_{\text {eec }} /(2 \cdot \lambda)$
With $\lambda=\mathrm{P}_{\mathrm{e}} / \mathrm{Max}$
The variance $v_{\text {ecc }}$ is given by:
$\mathrm{v}_{\text {ecc }}=\theta \cdot\left(\mathrm{E}_{\text {lecc }} / \mathrm{Max}\right)^{2}=\theta \cdot\left[\mathrm{E}_{\text {ecc }} /(2 \cdot \lambda \cdot \mathrm{Max})\right]^{2}=\theta \cdot\left[\mathrm{E}_{\mathrm{ecc}} /\left(2 \cdot \mathrm{P}_{\mathrm{e}}\right)\right]^{2}$
The standard uncertainty of eccentricity is given by:
$u_{\text {ecc }}{ }^{2}=v_{\text {ecc }} \cdot 1^{2}$
According to the assumption: $I \cong m_{c}$

5 Deviation of indication (Linearity)

5.1 Conventional weighing indication value

For the calculation of the error of indication, a new term is introduced: the conventional weighing indication value $\mathrm{m}_{\mathrm{c}}^{*}$, which is equal to the mass of a weight piece having a density $\rho_{\mathrm{c}}=8000\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$ at air density $\rho_{\alpha 0}=1,2\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$, and has the same weighing indication of a mass m having a density ρ_{k} at air density ρ_{α}.
$E=1-m_{c}^{*}$
$\mathrm{E}=$ Deviation of measurement
I = Indication of measurement
$\mathrm{m}_{\mathrm{c}}^{*}=$ conventional indication value of standard weight
$m_{c}^{*} \cdot\left(1-\frac{\rho_{a 0}}{\rho_{c}}\right)=m \cdot\left(1-\frac{\rho_{a}}{\rho_{k}}\right) \Rightarrow m_{c}^{*}=m_{c} \cdot \frac{\rho_{k}-\rho_{a}}{\rho_{k}-\rho_{\alpha 0}}$
and $m=m_{c} \cdot 0,99985 \cdot \rho_{\mathrm{k}} /\left(\rho_{\mathrm{k}}-1,2\right)$

In the case $\rho_{\alpha}=\rho_{\alpha 0} \Rightarrow m_{c}^{*}=m_{c}$
$\mathrm{m}=$ mass
$m_{c}=$ conventional value of mass of standard weight from calibration certificate
$\rho_{\mathrm{k}}=$ density of standard weight from calibration certificate $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$\rho_{\alpha}=$ air density $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$\rho_{\alpha 0}=1,2\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$
$\rho=8000\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$

5.2 Evaluation

M easurement I	Conventional value of mass $\mathrm{m}_{\mathrm{ci}}[\mathrm{~g}]$	Conventional value of indication $\mathrm{m}_{\mathrm{ci}}^{*}[\mathrm{~g}]$	Indication [g] I_{i}	$\underset{\mathrm{i}}{\mathrm{I}_{\mathrm{i}}-\mathrm{m}_{\mathrm{c}}^{*}} \underset{[\mathrm{~g}]}{ }=\mathrm{E}_{\mathrm{I}}$
1	Min	$\mathrm{m}_{\mathrm{c} 1}^{*}$	I_{1}	E_{1}
2	$\mathrm{m}_{\mathrm{c} 2} \approx(1 / \mathrm{N}) \cdot \mathrm{Max}$	$\mathrm{m}_{\mathrm{c} 2}^{*}$	I_{2}	E_{2}
3	$\mathrm{m}_{\mathrm{c} 3} \approx(2 / N) \cdot \mathrm{Max}$	$\mathrm{m}_{\mathrm{c} 3}^{*}$	I_{3}	E_{3}
4	$\mathrm{m}_{\text {c4 }}$	$\mathrm{m}_{\mathrm{c} 4}^{*}$	I_{4}	E_{4}
...
N	$\mathrm{m}_{\mathrm{cN}} \approx \operatorname{Max}$	$\mathrm{m}_{\mathrm{cN}}^{*}$	I_{N}	E_{N}

If $\left(I_{1}, E_{1}\right), \ldots\left(I_{N}, E_{N}\right)$ are the measured pairs of values, they are described by the linear equation $E=A+B \cdot I$, the values $\hat{A}_{\text {best }}$ and $B_{\text {best }}$ result, which minimize the sum of the squares of the deviations.

$$
\begin{equation*}
A_{\text {best }}=\frac{\left(\sum I_{i}^{2}\right)\left(\sum E_{i}\right)-\left(\sum I_{i}\right)\left(\sum I_{i} \cdot E_{i}\right)}{\Delta} \tag{22}
\end{equation*}
$$

$\mathrm{B}_{\text {best }}=\frac{N \cdot\left(\sum I_{i} \cdot E_{i}\right)-\left(\sum I_{i}\right)\left(\sum E_{i}\right)}{\Delta}$
$\Delta=N \cdot\left(\sum_{i}^{I_{i}^{2}}\right)-\left(\sum_{i}^{I_{i}}\right)^{2}$
$\sigma_{\mathrm{E}}{ }^{2}=\frac{1}{\mathrm{~N}-2} \cdot \sum_{i=1}^{N}\left(E_{i}-\mathrm{A}_{\text {best }}-B_{\text {best }} \cdot I_{i}\right)^{2}$
where σ_{E} is the standard deviation of the straight line $\mathrm{A}_{\text {best }}+\mathrm{B}_{\text {best }} \cdot \mathrm{I}$.
Additionally, the standard uncertainty for the parameters $\mathrm{A}_{\text {best }}$ and $\mathrm{B}_{\text {best }}$ are:
$\sigma_{\Delta}{ }^{2}=\frac{\sigma_{\mathrm{E}}{ }^{2} \cdot \sum I_{i}^{2}}{\Delta}$
$\sigma_{\mathrm{B}}{ }^{2}=\frac{\mathrm{N} \cdot \sigma_{\mathrm{E}}{ }^{2}}{\Delta}$
and the systematic uncertainty is the greatest absolute value from:
$\operatorname{MAX}\left|A_{\text {best }}+B_{\text {best }} \cdot l_{i} \pm t_{95} \cdot \sigma_{\text {linie }}\right|$
where t is the unilateral confidence level, which means that for a number of measurements N , the degree of freedom is $\mathrm{N}-2$.
$\sigma_{\varepsilon}{ }^{2}=\left(\frac{\partial \mathrm{E}}{\partial \mathrm{A}} \cdot \sigma_{A}\right)^{2}+\left(\frac{\partial \mathrm{E}}{\partial \mathrm{B}} \cdot \sigma_{\mathrm{B}}\right)^{2}=\sigma_{\mathrm{A}}{ }^{2}+\mathrm{I}^{2} \cdot \sigma_{\mathrm{B}}{ }^{2}$
$\sigma_{\text {line }}{ }^{2}=\left[\frac{\partial\left(A_{\text {best }}+B_{\text {best }} l\right)}{\partial E_{1}} \cdot \sigma_{\varepsilon 1}\right]^{2}+\ldots+\left[\frac{\partial\left(\mathrm{A}_{\text {best }}+B_{\text {best }} I\right)}{\partial E_{N}} \cdot \sigma_{e \mathrm{~N}}\right]^{2}=\frac{\sigma_{\varepsilon}^{2}}{N_{\varepsilon}}$
with
$\sigma_{\varepsilon 1}=\sigma_{\varepsilon 2}=\ldots=\sigma_{\varepsilon N}=\sigma_{\varepsilon}$
and

$$
\begin{equation*}
\mathrm{N}_{e}=\frac{\Delta^{2}}{\tau_{1} \cdot \mathrm{I}^{2}+\tau_{2} \cdot \mathrm{I}+\tau_{3}} \tag{32}
\end{equation*}
$$

$\tau_{1}=\left(\sum I_{i}^{2}\right) \cdot N^{2}-\left(\sum I_{i}\right)^{2} \cdot N$
$\tau_{2}=2 \cdot\left(\sum I_{i}\right)^{3}-2 \cdot N \cdot\left(\sum I_{i}^{2}\right) \cdot\left(\sum I_{i}\right)$
$\tau_{3}=\mathrm{N} \cdot\left(\sum I_{i}^{2}\right)-\left(\sum I_{i}^{2}\right) \cdot\left(\sum I_{i}\right)^{2}$
$\max \left\{\mathbb{N}_{\varepsilon}\right\}=N$ for $I=\left(\left.\Sigma\right|_{\mathrm{i}}\right) / \mathbb{N}$
$\sigma_{E m}{ }^{2}=\left[\frac{\partial\left(A_{\text {best }}+B_{\text {best }} \cdot I\right)}{\partial E_{1}} \cdot \sigma_{E 1}\right]^{2}+\ldots+\left[\frac{\partial\left(\mathrm{A}_{\text {best }}+B_{\text {bett }} \cdot I\right)}{\partial E_{N}} \cdot \sigma_{\mathrm{NN}}\right]^{2}=\frac{\sigma_{E}{ }^{2}}{\mathrm{~N}_{\epsilon}}$
with $\sigma_{\mathrm{E} 1}=\sigma_{\mathrm{E} 2}=\ldots=\sigma_{\mathrm{EN}}=\sigma_{\mathrm{E}}$

The calculation of the standard deviation $\sigma_{\sigma \mathrm{Em}}$ of the average standard deviation σ_{Em} gives:
$\sigma_{\sigma_{\mathrm{E} m}}=\frac{1}{\sqrt{2 \cdot(N-1)}} \cdot \sigma_{\mathrm{E} m}$
This aids in the evaluation of the standard deviation of the population through the evaluation of the standard deviation of the sample, which means that the confidence level of $99,75 \%$ is less than:
$u_{\mathrm{E}}^{2}=\left[\sigma_{\mathrm{Em}}+\mathrm{t}_{99,75} \cdot \sigma_{\sigma \mathrm{Em}}\right]^{2}$

6 Uncertainty from drift of instruments

Considering:
$\Delta t=\mathrm{t}_{\text {max }}-\mathrm{t}_{\text {min }}+\mathrm{U}_{\mathrm{t}} / 2^{0,5}$
as the change in temperature during calibration and:
$U_{t}=$ the total uncertainty of the thermometer from its calibration certificate (with 2σ) according to the assumption $U_{t}=U_{t_{\text {min }}} \cong U_{t_{\text {max }}}$

TK = the effect of temperature on the mean gradient of the characteristic in ppm/K (estimate or data information sheet),
the variance v_{t} of the temperature effect, is calculated from:
$v_{t}=(1 / 12) \cdot\left[\Delta \mathrm{t} \cdot \mathrm{TK} \cdot 10^{-6} / \mathrm{ppm}\right]^{2}$
The assumption is that the distribution is rectangular. According to the rectangular distribution, the base is: [$\Delta \mathrm{t} \cdot \mathrm{TK} \cdot 10^{-6} / \mathrm{ppm}$] and the height: $1 /\left[\Delta \mathrm{t} \cdot \mathrm{TK} \cdot 10^{-6} / \mathrm{ppm}\right]$. The standard uncertainty of drift for the weighting instrument is:
$u_{t}^{2}=v_{t} \cdot 1^{2}$

7 Effect of convection

Considering:
$\mathrm{t}_{\text {air }}=$ air temperature $\left[{ }^{\circ} \mathrm{C}\right]$ with total uncertainty $\mathrm{U}_{\text {tair }}(2 \sigma)$
$\mathrm{t}_{\text {weights }}=$ standard weight temperature $\left[{ }^{\circ} \mathrm{C}\right]$ with total uncertainty $\mathrm{U}_{\text {tweights }}(2 \sigma)$
$\Delta t_{\text {conv }}=\mathrm{t}_{\text {weights }}-\mathrm{t}_{\text {air }} \pm\left[\left(U_{\text {tair }}^{2}+U_{\text {tweights }}^{2}\right)^{0.5}\right] / 2$
The relations between any of the quantities which have been referred to: $\Delta \mathrm{t}_{\text {conv }} \mathrm{m}$ are non-linear, and their values are calculated according to the following equation - see [11]:
$\Delta m_{\text {conv }}=-k_{v} m^{3 / 4} \frac{\Delta t_{\text {conv }}}{|\Delta t|^{1 / 4}}-k_{h} m \Delta t_{\text {conv }}$

In the case where $\Delta t_{\text {conv }}>0$
$k_{v}=215 \cdot 10^{-9}$
$k_{h}=75,4 \cdot 10^{-9}$
While for $\Delta \mathrm{t}_{\text {conv }}<0$
$k_{v}=119 \cdot 10^{-9}$
$k_{h}=20,2 \cdot 10^{-9}$
The standard uncertainty of the convection effect is calculated from:
$u_{\text {com }}{ }^{2}=\frac{\Delta m_{\text {com }}{ }^{2}}{12}$

8 Uncertainty from standard weights and density of air

Air temperature, relative humidity and atmospheric pressure are measured, and the greatest and smallest values during calibration are recorded.

Thus for an air temperature between $\mathrm{t}_{\text {min }}$ and $\mathrm{t}_{\text {max }}$, the standard uncertainty (1σ) is:
$u_{t}^{2}=\frac{\left(t_{\max }-t_{\min }\right)^{2}}{12}+\frac{U_{t}^{2}}{2}$
where U_{t} is the total uncertainty of the thermometer from the calibration certificate (with 2σ) according to the assumption $U_{t}=U_{t \text { min }} \cong U_{t \text { max }}$.

The same applies to the atmospheric pressure and the relative humidity:
$u_{p}{ }^{2}=\frac{\left(p_{\max }-p_{\min }\right)^{2}}{12}+\frac{U_{p}{ }^{2}}{2}$
$u_{h r}{ }^{2}=\frac{\left(h r_{\max }-h r_{\text {min }}\right)^{2}}{12}+\frac{U_{h r}{ }^{2}}{2}$
Over the range of environmental conditions of $600 \mathrm{mbar} \leq \mathrm{p} \leq 1100 \mathrm{mbar},-20^{\circ} \mathrm{C} \leq \mathrm{t} \leq+40^{\circ} \mathrm{C}$ and $\mathrm{hr} \leq 80 \%$, the approximate formula, which deviates from the internationally recommended formula the value $\Delta \rho_{\alpha} / \sigma_{\alpha}=2 \cdot 10^{-3}$, is:
$\rho_{\alpha}=\frac{0,34848 \cdot p-0,009024 \cdot h r \cdot e^{0,0612 t}}{273,15+t}$
where $\mathrm{p}=\left(\mathrm{p}_{\max }+\mathrm{p}_{\text {min }}\right) / 2, \mathrm{hr}=\left(\mathrm{hr}_{\text {max }}+\mathrm{hr}_{\text {min }}\right) / 2, \mathrm{t}=\left(\mathrm{t}_{\text {max }}+\mathrm{t}_{\text {min }}\right) / 2$
The relative uncertainty of the CIPM formula for the density of the air without the uncertainty of the measuring parameters, is $u_{f} / \sigma_{\mathrm{a}}=1 \cdot 10^{-4}(1 \sigma)$.

The standard uncertainty (1σ) of air density is:

$$
\begin{equation*}
u_{\rho \alpha}^{2}=\frac{\left(2 \cdot 10^{-3} \cdot \rho_{\alpha}\right)^{2}}{12}+\left(1 \cdot 10^{-4} \cdot \rho_{\alpha}\right)^{2}+\left(\frac{\partial \rho_{\alpha}}{\partial p} \cdot u_{p}\right)^{2}+\left(\frac{\partial \rho_{\alpha}}{\partial t} \cdot u_{t}\right)^{2}+\left(\frac{\partial \rho_{\alpha}}{\partial h r} \cdot u_{h r}\right)^{2} \tag{51}
\end{equation*}
$$

where:
$\frac{\partial \rho_{\alpha}}{\partial p}=\frac{0,34848}{273,15+t}$
$\frac{\partial \rho_{\alpha}}{\partial h r}=\frac{-0,009024 \cdot e^{0,06612 t}}{273,15+t}$
and
$\frac{\partial \rho_{\alpha}}{\partial t}=\frac{\left[0,009024 \cdot h r \cdot[1-(273,15+t) \cdot 0,0612] \cdot e^{0,0612 t}-0,34848 \cdot p\right]}{(273,15+t)^{2}}$
In cases where $\rho_{\text {CIPM }}$ is the calculated as a result from the CIPM formula of the density of the air, the standard uncertainty of the density of the air can be even lower, as follows:
$u_{\rho \alpha}{ }^{2}=\frac{\left(\rho_{a}-\rho_{C P M M}\right)^{2}}{12}+\left(1 \cdot 10^{-4} \cdot \rho_{\alpha}\right)^{2}+\left(\frac{\partial \rho_{\alpha}}{\partial p} \cdot u_{p}\right)^{2}+\left(\frac{\partial \rho_{\alpha}}{\partial t} \cdot u_{t}\right)^{2}+\left(\frac{\partial \rho_{\alpha}}{\partial h r} \cdot u_{h r}\right)^{2}$
The standard uncertainty of the conventional indication is:
$u_{m c^{*}}{ }^{2}=\left(\frac{\partial m_{c}{ }^{*}}{\partial m_{k}} \cdot u_{m k}\right)^{2}+\left(\frac{\partial m_{c}{ }^{*}}{\partial \rho_{\alpha}} \cdot u_{\rho \alpha}\right)^{2}+\left(\frac{\partial m_{c}{ }^{*}}{\partial \rho_{k}} \cdot u_{\rho k}\right)^{2}$
where $u_{\text {pk }}=$ the standard uncertainty (1σ) of the density of the standard weights $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ from the calibration certificate.

The variable which refers to standard weights and the air density, is calculated as follows:
$v_{k}=\left(\frac{\rho_{k}-\rho_{\alpha}}{\rho_{k}-\rho_{\alpha 0}} \cdot \frac{\sum_{k i}}{k \cdot m_{c 0}}\right)^{2}+\left(\frac{1}{\rho_{k}-\rho_{\alpha 0}} \cdot u_{\rho \alpha}\right)^{2}+\left(\frac{\rho_{\alpha}-\rho_{\alpha 0}}{\left(\rho_{k}-\rho_{\alpha 0}\right)^{2}} \cdot u_{\rho k}\right)^{2}$
$u_{m c^{*}}{ }^{2}=\left.v_{k} \cdot\right|^{2}$
According to the assumption: $I \cong \mathrm{~m}_{\mathrm{ci}}$
$\Sigma U_{\mathrm{i}}=$ Uncertainty of the standard weight (2 σ) from the calibration certificate
$\Sigma U_{D i}=k_{D} \cdot \Sigma U_{i}, 1 \leq k_{D} \leq 3, k_{D}$ Drift, where k_{D} is the quantitative coefficient of the drift of the standard weight $\mathrm{k}=2$
$\mathrm{m}_{\mathrm{CO}}=$ conventional mass from the calibration certificate of the weight $\cong \mathrm{Max}$ value of weighing instrument.

9 Hysteresis

The test loads P_{i}, tare values $T L_{i}$ and indications I_{i} were chosen or determined as below. Total uncertainty during unloading of the weighing instrument is the same as during loading. The calculation of random and systematic uncertainty is similar to that in paragraph 5 .

Measurement i	Tare values TL	Load	$\begin{aligned} & \text { Conventional } \\ & \text { value of mass } \\ & \mathrm{m}_{\mathrm{ci}}[\mathrm{~g}] \end{aligned}$	Conventional value of indication $\mathrm{m}_{\mathrm{Ci}}{ }^{*}[\mathrm{~g}]$	Indication [g] I_{i}	$\begin{gathered} \mathrm{I}_{\mathrm{i}}-\mathrm{m}_{\mathrm{ci}}^{*}=\mathrm{E}_{\mathrm{l}} \\ {[\mathrm{~g}]} \end{gathered}$
1	ح Max	ح (1/N)Max	m_{cl}	$\mathrm{m}_{\mathrm{c} 1}{ }^{*}$	I_{1}	E1 \downarrow
2	ح Max	$\approx(2 / N) M a x$	$\mathrm{m}_{\mathrm{c} 2}$	$\mathrm{m}_{\mathrm{c} 2}{ }^{\text {a }}$	I_{2}	E2 \downarrow
\cdots	ح Max	...	\ldots	...	\cdots	...
$\mathrm{N}-1$	ح Max	$\approx[(\mathrm{N}-1) / \mathrm{N}] \mathrm{Max}$	$\mathrm{m}_{\mathrm{CN}-1}$	$\mathrm{m}_{\mathrm{CN}-1}{ }^{\text {* }}$	$\mathrm{I}_{\mathrm{N}-1}$	EN-1 \downarrow
N	~ Max	~ Max	m_{cN}	$\mathrm{m}_{\mathrm{cN}}{ }^{*}$	I_{N}	EN \downarrow

10 Total uncertainty of measurement

The effective degrees of freedom from the Welch-Satterthwaite formula, is:
$v_{e f f}=\frac{u_{c}{ }^{4}}{\sum \frac{u_{i}^{4}}{v_{i}}}$
where u_{c} is the combined standard uncertainty (1σ).
$u_{c}=\sqrt{u_{w}{ }^{2}+u_{r}{ }^{2}+u_{E}{ }^{2}+u_{c o m}{ }^{2}+\left(v_{\text {occ }}+v_{t}+v_{k}\right) I^{2}}$

The coverage factor $t_{\mathrm{p}^{\prime}}$ is calculated according to the following formula:
$t_{p}=k_{p} \cdot \sqrt{1+\frac{2}{v_{\text {eff }}}}$
where $\mathrm{k}_{\mathrm{p}}=2$
The uncertainty of measurement comprises type A and type B components. For multiple range instruments, the formula is applied to each range, separately. The formula for total uncertainty (2σ) is:

Total uncertainty during loading (\uparrow)and unloading (\downarrow) of the weighing instrument, is:
$U_{\text {boxad }} \uparrow \downarrow=\sqrt{U_{\text {random }}{ }^{2} \uparrow+U_{\text {random }}{ }^{2} \downarrow}+\left|U_{\text {systemanaic }} \uparrow+U_{\text {ssssemenaic }} \downarrow\right|$
where stochastic parts of the systematic uncertainties are geometrically added.

11 Determination of mass

In cases where the mass m_{t} must be calculated, considering an object with density $\rho_{t^{\prime}}$, standard uncertainty of density $\mathrm{u}_{\mathrm{ot}}(1 \sigma)$ and air density ρ_{ot} we have measurement on the indication W_{t} (total uncertainty of weighing instrument U_{wt}) of the weighting instrument, the mass is:
$m_{t}=\frac{0,99985 \cdot W_{t} \cdot \rho_{t}}{\rho_{t}-\rho_{t t}}$
while the calculated total uncertainty of the object U_{t} is calculated by the formula:
$U_{t}=2 \cdot\left\{\left[\frac{0,99985 \cdot \rho_{t}}{\rho_{t}-\rho_{a t}} \cdot \frac{U_{w t}}{2}\right]^{2}+\left[\frac{-0,99985 \cdot W_{t} \cdot \rho_{\alpha t}}{\left(\rho_{t}-\rho_{\alpha t}\right)^{2}} \cdot u_{\rho t}\right]^{2}+\left[\frac{-0,99985 \cdot W_{t} \cdot \rho_{t}}{\left(\rho_{t}-\rho_{\alpha t}\right)^{2}} \cdot u_{\rho a t}\right]^{2}\right\}^{1 / 2}$

12 Examples

12.1 Single-range instrument

The instrument characteristics are: $\mathrm{Max}=320 \mathrm{~g}, \mathrm{~d}=0,001 \mathrm{~g}$
12.2 Environmental conditions

	Min	Max	Mean	Total uncertainty (of instruments) (2σ)	Standard uncertainty (1σ)
Air pressure (mbar)	962,7	962,9	962,8	0,22	$u_{\mathrm{p}}=0,18$
Air temperature $\left({ }^{\circ} \mathrm{C}\right)$	17,3	17,9	17,6	0,3	$\mathrm{u}_{\mathrm{t}}=0,27$
Relative humidity (\%)	40	43	41,5	3	$\mathrm{u}_{\mathrm{hr}}=2,29$

Density of air from formula (47):

$$
\rho_{\mathrm{a}}=1,1502\left[\mathrm{~kg} / \mathrm{m}^{3}\right]
$$

Density of air from the CIPM formula:

$$
\rho_{\mathrm{CIPM}}=1,150175\left[\mathrm{~kg} / \mathrm{m}^{3}\right]
$$

$\left(\partial \rho_{\mathrm{a}} / \partial \mathrm{p}\right)=0,0012\left[\mathrm{~kg} / \mathrm{m}^{3}\right] /[\mathrm{mbar}]$
$\left(\partial \rho_{\mathrm{a}} / \partial \mathrm{t}\right)=-0,0042\left[\mathrm{~kg} / \mathrm{m}^{3}\right] /\left[{ }^{\circ} \mathrm{C}\right]$
$\left(\partial \rho_{\mathrm{a}} / \partial \mathrm{hr}\right)=-9,06 \cdot 10^{-5}\left[\mathrm{~kg} / \mathrm{m}^{3}\right] /[\%]$
$u_{\mathrm{pa}}{ }^{2}=\left[\left(\rho_{\mathrm{a}}-\rho_{\text {ClPM }}\right)^{2 / 12]}+\left(1 \cdot 10^{-4} \cdot \rho_{\mathrm{a}}\right)^{2}+\left[\left(\partial \rho_{\mathrm{a}} \partial \mathrm{p}\right) \cdot u_{\mathrm{p}}\right]^{2}+\left[\left(\partial \rho_{\mathrm{a}} \partial \mathrm{t}\right) \cdot \mathrm{u}_{\mathrm{t}}\right]^{2}+\left[\left(\partial \rho_{\mathrm{a}} \partial \mathrm{hr}\right) \cdot u_{\mathrm{hr}}\right]^{2}\right.$
$u_{p a}{ }^{2}=0,01 \cdot 10^{-9}+13,23 \cdot 10^{-9}+39,55 \cdot 10^{-9}+1315,07 \cdot 10^{-9}+43,60 \cdot 10^{-9}$
$u_{p a}{ }^{2}=1,41 \cdot 10^{-6}$
$u_{\mathrm{pa}}=0,0012\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$

12.3 Repeatability

$P=100 \mathrm{~g}$ is chosen as the test load. The readings in the table at the top of page 15 were recorded.

Measurement i	Indication [g]
1	100,000
2	100,001
3	100,000
4	100,000
5	100,000
6	100,001

This yields:
Standard deviation $\mathrm{s}=0,000516[\mathrm{~g}]$
$u_{w}=s^{2}=26,67 \cdot 10^{-8}\left[g^{2}\right]$

12.4 Resolution

The variance of the rounding error is:
$u_{r}^{2}=\left[(\mathrm{d} / 2) \cdot 3^{-0.5}\right]^{2}=d^{2} / 12=8,33 \cdot 10^{-8}\left[g^{2}\right]$.

12.5 Eccentricity (Off-center loading)

$\mathrm{P}=200 \mathrm{~g}$ was chosen as the test load. The following readings were recorded:
200,000 g, tared 0 g
$e_{2}=0,001[g]$
$e_{3}=0,000[\mathrm{~g}]$
$\mathrm{e}_{4}=-0,002[\mathrm{~g}]$
$\mathrm{e}_{5}=0,003[\mathrm{~g}]$
This yields:
$\mathrm{e}=0,002[\mathrm{~g}]$
$\mathrm{E}^{*}=0,003[\mathrm{~g}]$
$\zeta=2$
$\mathrm{K}=15$
$\sigma_{\text {ecc }}^{2}=1,187 \cdot 10^{-6}$
$\mathrm{E}_{\text {ecc }}=0,003[\mathrm{~g}]$
$\theta=0,132$
$v_{\text {ecc }}=7,42 \cdot 10^{-12}$
$u_{\text {ecc }}^{2}=v_{\text {eec }} \cdot 1^{2}$

12.6 Deviation of indication (Linearity)

The test loads and indications, I_{i}, were chosen or determined as follows:

Measurement i	Conventional value of mass $\mathrm{m}_{\mathrm{ci}}[\mathrm{g}]$	Conventional value of indication $\mathrm{m}_{\mathrm{Ci}}^{*}[\mathrm{~g}]$	Indication $[\mathrm{g}]$ I_{i}	$\mathrm{I}_{\mathrm{i}}-\mathrm{m}_{\mathrm{ci}}^{*}=\mathrm{E}_{\mathrm{I}}$ $[\mathrm{g}]$
1	0,02001	0,02001	0,020	0,0000
2	39,99997	40,00022	40,000	$-0,0002$
3	80,00012	80,00062	80,000	$-0,0006$
4	120,00012	120,00087	120,000	$-0,0009$
5	160,00016	160,00116	160,000	$-0,0012$
6	200,00018	200,00143	200,000	$-0,0014$
7	240,00020	240,00169	240,000	$-0,0017$
8	280,00030	280,00204	280,001	$-0,0010$
9	320,00030	320,00229	320,001	$-0,0013$

Standards weights of class E_{2} with density $\rho_{\mathrm{ki}}=8000\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$ and standard uncertainty of density $u_{\text {pki }}[1 \sigma]=100\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$, are selected.
$A_{\text {best }}=-0,00024[\mathrm{~g}]$
$B_{\text {best }}=-4,30 \cdot 10^{-6}[\mathrm{~g} / \mathrm{g}]$
$\Delta=863947,44\left[\mathrm{~g}^{2}\right]$
$\sigma_{E}^{2}=10,07 \cdot 10^{-8}\left[g^{2}\right]$
$\sigma_{\mathrm{A}}^{2}=3,81 \cdot 10^{-8}\left[\mathrm{~g}^{2}\right]$
$\sigma_{B}^{2}=1,05 \cdot 10^{-12}\left[g^{2 /} g^{2}\right]$
The systematic error is the greatest absolute value from:
$\operatorname{MAX}\left|A_{\text {best }}+B_{\text {best }} \cdot l_{i} \pm\left(t_{95} / N_{\varepsilon}^{1 / 2}\right) \cdot\left[\sigma_{A}^{2}+I^{2} \sigma_{B}^{2}\right]^{0,5}\right|=$ $=0,00024+\left(4,30 \cdot 10^{-6}\right) \cdot I+\left(1,89 / N_{\varepsilon}^{1 / 2}\right) \cdot\left[3,81 \cdot 10^{-8}+\left.\left(1,05 \cdot 10^{-12}\right) \cdot\right|^{2}\right]^{0,5}$
where t_{95} corresponds to a unilateral confidence level of 95% (see DIN1319-3).

Fig. 2 Relationship between N_{ε} and indication $\left(\max =N\right.$ for $\left.I=\left(\Sigma I_{i}\right) / N\right)$

12.7 Uncertainty from drift of instruments
$\Delta \mathrm{t}=\mathrm{t}_{\text {max }}-\mathrm{t}_{\text {min }}+\mathrm{U}_{\mathrm{t}} / 2^{0,5}=0,81\left[{ }^{\circ} \mathrm{C}\right]$

$$
\begin{aligned}
& \mathrm{TK}=2 \mathrm{ppm} \\
& \mathrm{u}_{\mathrm{TK}}^{2}=\mathrm{v}_{\mathrm{TK}} \cdot \mathrm{I}^{2}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{TK}}=(1 / 12) \cdot\left[\Delta \mathrm{t} \cdot \mathrm{TK} \cdot 10^{-6} / \mathrm{ppm}\right]^{2}=0,22 \cdot 10^{-12}$

12.8 Effect of convection

$\Delta \mathrm{t}_{\text {conv }}=\left(\mathrm{t}_{\text {weights }}-\mathrm{t}_{\text {air }}\right)+\left[\left(\mathrm{U}_{\text {tair }}^{2}+\mathrm{U}_{\text {tweights }}^{2}\right)^{0,5}\right] / 2=(20,4-17,5)+\left[\left(0,3^{2}+0,2^{2}\right)^{0,5}\right] / 2=3,08\left[{ }^{\circ} \mathrm{C}\right]$
$u_{\text {conv }}{ }^{2}=\left[\frac{215 \cdot 10^{-9} \cdot I^{3 / 4} \cdot 3,08^{3 / 4}+75,4 \cdot 10^{-9} \cdot I \cdot 3,08}{\sqrt{12}}\right]^{2}$
12.9 Uncertainty from standard weights and density of air
$\mathrm{u}_{\mathrm{m} \mathrm{c}^{*}}^{2}=\mathrm{v}_{\mathrm{k}} \cdot \mathrm{I}^{2}$
$\Sigma \mathrm{U}_{\mathrm{i}}=0,175[\mathrm{mg}]=0,000175[\mathrm{~g}]$

$$
\begin{aligned}
& k_{D}=1,5 \quad k=2 \\
& \Sigma U_{i}=0,0002625[g]
\end{aligned}
$$

$v_{k}=0,20 \cdot 10^{-12}$

12.10 Total uncertainty

The total uncertainty is calculated according to the following formula:
$U=t_{p} \cdot\left\{26,67 \cdot 10^{-8}+8,33 \cdot 10^{-8}+7,\left.42 \cdot 10^{-12} \cdot\right|^{2}+\right.$

$\left.+0,22 \cdot 10^{-12} \cdot I^{2}+\left[\frac{215 \cdot 10^{-9} \cdot I^{3 / 4} \cdot 3,08^{3 / 4}+75,4 \cdot 10^{-9} \cdot I \cdot 3,08}{\sqrt{12}}\right]^{2}+0,20 \cdot 10^{-12} \cdot I^{2}\right\}^{1 / 2}+$
$+0,00024+4,30 \cdot 10^{-6} \cdot I+\frac{1,89}{\sqrt{\frac{863947,44^{2}}{7775526,99 \cdot I^{2}-2488206650 \cdot I+2,81993 \cdot 10^{11}}}} \cdot\left[3,81 \cdot 10^{-8}+1,05 \cdot 10^{-12} \cdot I^{2}\right]^{1 / 2}$

The total uncertainty using the approximate formula is:
$U_{\text {total }}=\left(-1 \cdot 10^{-13}\right) \cdot I^{4}+\left(6 \cdot 10^{-11}\right) \cdot I^{3}+\left(8 \cdot 10^{-9}\right) \cdot I^{2}+\left(2 \cdot 10^{-6}\right) \cdot \mid+0,0002$
with $R^{2}=1$

Fig. 3 Relationship between indication and uncertainties

12.11 Uncertainty budget

Test	Distribution	fd	$1=320[\mathrm{~g}]$		$\mathrm{I}=160$ [g]		$1=80[\mathrm{~g}]$	
			$u^{2}[1 \sigma]\left[g^{2}\right]$	$100 * u_{i} / u_{c}$	$u^{2}[1 \sigma]\left[g^{2}\right]$	$100 * u_{i} / u_{c}$	$u^{2}[1 \sigma]\left[g^{2}\right]$	$100 * u_{i} / u_{c}$
Repeatability	Student	5	$26,67 \cdot 10^{-8}$	45,0\%	$26,67 \cdot 10^{-8}$	66,7 \%	$26,67 \cdot 10^{-8}$	74,7\%
Resolution	Rectangular	∞	$8,33 \cdot 10^{-8}$	25,1 \%	$8,33 \cdot 10^{-8}$	37,3\%	$8,33 \cdot 10^{-8}$	41,8\%
Eccentricity	"New"	∞	75,97 $\cdot 10^{-8}$	75,9 \%	$18,99 \cdot 10^{-8}$	56,3 \%	$4,74 \cdot 10^{-8}$	31,5 \%
Deviations of indication-linearity	Gaussian	∞	$16,46 \cdot 10^{-8}$	35,3\%	$4,84 \cdot 10^{-8}$	28,4 \%	7,75 $\cdot 10^{-8}$	40,3 \%
Uncertainty from drift of instruments	Rectangular	∞	$2,25 \cdot 10^{-8}$	13,1\%	$0,56 \cdot 10^{-8}$	9,7\%	$0,14 \cdot 10^{-8}$	5,4\%
Effect of convection	Rectangular	∞	0,10 $\cdot 10^{-8}$	2,8\%	0,03 $\cdot 10^{-8}$	2,2 \%	$0,01 \cdot 10^{-8}$	1,3\%
Uncertainty from standard weights and density of air	Gaussian	∞	$2,01 \cdot 10^{-8}$	12,4\%	$0,50 \cdot 10^{-8}$	9,2 \%	$0,13 \cdot 10^{-8}$	5,1 \%
			$131,80 \cdot 10^{-8}$		59,93 $\cdot 10^{-8}$		47,77 $\cdot 10^{-8}$	
	u_{c}		$1,15 \cdot 10^{-3}$		$0,77 \cdot 10^{-3}$		$0,69 \cdot 10^{-3}$	
	$t_{p}(\mathrm{v})$		2,020		2,078		2,121	
Random uncertainty			$2,31 \cdot 10^{-3} \mathrm{~g}$		$1,61 \cdot 10^{-3} \mathrm{~g}$		$1,47 \cdot 10^{-3} \mathrm{~g}$	
Systematic uncertainty			$2,06 \cdot 10^{-3} \mathrm{~g}$		$1,09 \cdot 10^{-3} \mathrm{~g}$		$0,75 \cdot 10^{-3} \mathrm{~g}$	
Total uncertainty			0,0044 g		0,0027 g		0,0022 g	

13 Conclusions

A new a-priori distribution has been introduced for eccentricity, where the coefficient κ is determined according to the characteristics of eccentric loading, for each weighing instrument.

The minimum value of random uncertainty is not found for $I=0$ (in the paradigm of the current paper the minimum value is found for $\mathrm{I}=59 \mathrm{~g}$). As " N " increases the minimum random uncertainty takes a smaller value and this minimum is transferred to higher indications.

The formulation of the systematic error as $A_{\text {best }}+B_{\text {best }} I$, gives the most probable value of the population but not for a confidence level of at least 95%. Additionally, the formulation:
$\max \left|A_{\text {best }}+B_{\text {best }} \cdot I \pm t_{95} \cdot \sqrt{\frac{\sigma_{\mathrm{A}}{ }^{2}+I^{2} \cdot \sigma_{\mathrm{B}}{ }^{2}}{N_{\varepsilon}}}\right|$
determines the highest level, so that a statistic hypothesis can be made that the systematic uncertainty of the population with a possibility of 95% is smaller than the aforementioned highest limit.

The population is defined as the number of scale intervals, the quotient $\mathrm{Max}_{\mathrm{i}} / \mathrm{d}_{\mathrm{i}}$ of the maximum capacity of each partial range and the appropriate scale interval (at this article's paradigm it is considered as 320000).

References

[1] DIN V ENV 13005 Leitfaden zur Angabe der Unsicherheit beim Messen 1999. German version of the "Guide to the expression of uncertainty in measurement"
[2] Kochsiek,M.: Gläser M. 1997 Massebestimmung-VCH Weinheim
[3] Kochsiek,M. Grundlagen der Massebestimmung 10/92 Mettler Toledo AG
[4] Taylor J ohn R. Fehleranalyse/hrsg. 1988 - VCH Weinheim. German version of "An Introduction to Error Analysis"
[5] Archimedes; De architectura libri decem from Marcus Vitruvius Pollio
[6] DIN 1319-3 Grundlagen der Meßtechnik. Teil 3: Auswertung von Messungen einer einzelnen Meßgröße Meßunsicherheit
[7] DKD-3 Angabe der Meßunsicherheit bei Kalibrierungen. German version of EAL-R2 "Expression of the Uncertainty of Measurement in Calibration"
[8] OIMLR 111 Weights of Classes $E_{1}, E_{2}, F_{1}, F_{2}, M_{1}, M_{2}, M_{3}$
[9] EN 45501: M etrological Aspects of Nonautomatic Weighing Instruments
[10] Einführung zur Fehlerrechnung im Praktikum / P. Blüm Universität Karlsruhe, 2001
[11] M. Gläser -Change of the apparent mass of weights arising from temperature differences / M etrologia 36 (1999) pp. 183-197
[12] DKD-R7-1 Kalibrierung elektronischer nichtselbsttätiger Waagen Blatt 1, 2, 3 (1998)
[13] Weise, K.; Wöger, W. 1999 M eßunsicherheit und Meßdatenauswertung. Wiley-VCH, Weinheim
[14] Giacomo, P.; Equation for the Determination of the Density of Moist Air. Metrologia 18 (1982) pp. 33-40
[15] Davis,R.S.; Equation for the Determination of the Density of Moist Air. (1981/91) Metrologia 29 (1992) pp. 67-70

