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Statistical Concepts in
Metrology- With a

Postscript on Statistical
Graphics

Harry H. Ku

Statistical Engineering Division, National Bureau of Standards, Gaithersburg, MD 20899

Statistical Concepts in Metrology" was originally written as Chapter 2
for the Handbook of Industrial Metrology published by the American Society
of Tool and Manufacturing Engineers, 1967. It was reprinted as one of 40
papers in NBS Special Publication 300, VolUlUe I, Precision Measurement and
Calibration; Statistical Concepts and Procedures, 1969. Since then this chapter
has been used as basic text in statistics in Bureau-sponsored courses and semi-
nars, including those for Electricity, Electronics, and Analytical Chemistry.

While concepts and techniques introduced in the original chapter remain
valid and appropriate, some additions on recent development of graphical
methods for the treatment .of data would be useful. Graphical methods can be
used effectively to "explore" information in data sets prior to the application
of classical statistical procedures. For this reason additional sections on statisti-
cal graphics are added as a postscript.

Key words: graphics; measurement; metrology; plots; statistics; uncertainty.

STATISTICAL CONCEPTS OF

A MEASUREMENT PROCESS

Arithmetic Numb~rs and Measurement
Numbers

In metrological work, digital numbers are used for different purposes
and consequently these numbers have different interpretations. It is therefore
important to differentiate the two types of numbers which will be encountered.

Arithmetic numbers are exact numbers. 3 J2, i, or 7J: are all exact
r.umbers by definition, although in expressing some of these numbers in
digital form , approximation may have to be used. Thus 7J: may be written
as 3, 14 or 3. 1416, depending on our judgment of which is the proper one to
use from the combined point of view of accuracy and convenience. By the



usual rules of rounding, the approximations do not differ from the exact
values by more than *0.5 units of the last recorded digit. The accuracy of
the result can always be extended if necessary.

Measurement numbers, on the other hand, are not approximations to
exact numbers, but numbers obtained by operation under approximately
the same conditions. For example, three measurements on the diameter of
a steel shaft with a micrometer may yield the following results:

No. Diameter in General notation

396
392
401

Sum 1.189

. .

Average 0.3963

Range 0.009

i=1

~~Xi
= Xmax min

There is no rounding off here. The last digit in the measured value
depends on the instrument used and our ability to read it. If we had used
a coarser instrument, we might have obtained 0.4 0.4, and 0.4; if a finer
instrument, we might have been able to record to the fifth digit after the
decimal point. In all cases, however, the last digit given certainly does
not imply that the measured value differs from the diameter by less than
::1:::0. 5 unit of the last digit.

Thus we see that measurement numbers differ by their very nature from
arithmetic numbers. In fact, the phrase ..significant figures" has little meaning
in the manipulation of numbers resulting from measurements. Reflection on
the simple example above will help to convince one of this fact.

Computation and Reporting of Results. By experience, the metrologist
can usually select an instrument to give him results adequate for his needs
as illustrated in the example above. Unfortunately, in the process of com-
putation, both arithmetic numbers and measurement numbers are present
and frequently confusion reigns over the number of digits to be kept in
successive arithmetic operations.

No general rule can be given for all types of arithmetic operations. If the
instrument is well-chosen , severe rounding would result in loss of infor-
mation. One suggestion , therefore, is to treat all measurement numbers as
exact numbers in the operations and to round off the final result only.
Another recommended procedure is to carry two or three extra figures
throughout the computation , and then to round off the final reported value
to an appropriate number of digits.

The ..appropriate" number of digits to be retained in the final result
depends on the ..uncertainties" attached to this reported value. The term

uncertainty" will he treated later under ..Precision .and Accuracy ; our

only concern here is the number of digits in the expression for uncertainty.
A recommended rule is that the uncertainty should be stated to no more

than two significant figures, and the reported value itself should be stated



to the last place affected by the qualification given by the uncertainty state-
ment. An example is:

The apparent mass correction for the nominal 109 weight is
+0.0420 mg with an overall uncertainty of ::1:0.0087 mg using three
standard deviations as a limit to the effect of random errors of
measurement, the magnitude of systematic errors from known sources
being negligible.

The sentence form is preferred since then the burden is on the reporter
to specify exactly the meaning of the term uncertainty, and to spell out its
components. Abbreviated forms such as 1: h, where is the reported

value and a measure of uncertainty in some vague sense, should always
be avoided.

, '

Properties of Mecsurement Numbers

The study of the properties of measurement numbers, or the Theory of
Errors , formally began with Thomas Simpson more than two hundred years
ago , and attained its full development in the hands of Laplace and Gauss.
In the next subsections some of the important properties of measurement
numbers will be discussed and summarized , thus providing a basis for the
statistical treatment ' and analysis of these numbers in the following major
section.

The Limiting Mean. As shown in the micrometer example above, the
results of repeated measurements of a single physical quantity under essentially
the same conditions yield a set of measurement numbers. Each member of
this set is an estimate of the quantity being measured , and has equal claims

on its value. By convention , the numerical values of these measurements
are denoted by Xh X2'.' 

. . , 

Xn, the arithmetic mean by x, and the range by

, the difference between the largest value and the smallest value
obtained in the measurements.

If the results of measurements are to make any sense for the purpose at
hand, we must require these numbers, though different, to behave .as a
group in a certain predictable manner. Experience has shown that this 
indeed the case under the conditions stated in italics above. In fact, let us
adopt as the postulate of measurement a statement due to N. Ernest

Dorsey (reference 2):

The mean ora family of measurements-of a number of measure-

ments for a given quantity carried out by the same apparatus, pro-
cedure, and observer-approaches a definite value as the number of
measurements is indefinitely increased. Otherwise, they could not
properly be called measurements of a given quantity. In the theory
of errors, this limiting mean is frequently called the 'true' value
although it bears no necessary relation to the true quaesitum, to the
actual value of the quantity that the observer desires to measure.

This has often confused the unwary. Let us call it the limiting mean.

Thus, according to this postulate, there exists a limiting mean 
which approaches as the number of measurements increases indefinitely,

, in symbols as 00. Furthermore, if the true value is 7, there

is usually a difference between and 7, or A = - 7, where A is defined

as the bias or systematic error of the measurements.

*References ' are listed at the end of this chapter.



In practice , however, we will run into difficulties. The value of cannot
be obtained since one cannot make an infinite number of measurements.
Even for a large number of measurements , the conditions will not remain
constant, since changes occur from hour to hour, and from day to day.
The value of is unknown and usually unknowable, hence also the bias.
Nevertheless, this seemingly simple postulate does provide a sound foun-
dation to build on toward a mathematical model , from which estimates can
be made and inference drawn , as will be seen later on.

flange, Variance, and Standard Deviation. The range of measurements
on the other hand , does not enjoy this desirable property of the arithmetic
mean. With one more measurement, the range may increase but cannot
decrease. Since only the largest and the smallest numbers enter into its
calculation , obviously the additional information provided by the measure-
ments in between is lost. It will be desirable 'to look for another measure
of the dispersion (spread , or scattering) of our measurements which will
utilize each measurement made with equal weight , and which will approach
a definite number as the number of measurements is indefinitely increased.

A number of such measures can be constructed; the most frequently
used are the variance and the standard deviation. The choice of the variance
as the measure of dispersion is based upon its mathematical convenience
and maneuverability Variance is defined as the value approached by the
average of the sum of squares of the deviations of individual measurements
from the limiting mean as the number of measurements is indefinitely
increased , or in symbols:

2- ~ (Xi m)2 ------ (T variance, as ------ 00

The positive square root of the variance, (T is called the standard deviation
(of a single measurement); the standard deviation is of the same dimension-
ality as the limiting mean.

There are other measures of dispersion , such as average deviation and
probable error. The relationships between these measures and the standard
deviation can be found in reference I.

Population and the frequency Curve. We shall call the limiting mean 

the location parameter and the standard deviation (T the scale parameter 
the population of measurement numbers generated by a particular measure-
ment process. By population is meant the conceptually infinite number of
measurements that can be generated. The two numbers and (T describe
this population of measurements to a large extent, and specify it completely
in one important special case.

Our model of a measurement process consists then of a defined popu-
lation of measurement numbers with a limiting mean and a standard
deviation (T. The result of a single measurement X* can take randomly any
of the values belonging to this population. The probability that a particular
measurement yields a value of which is less than or equal to is the

proportion of the population that is less than or equal to in symbols

PfX

":::::

proportion of population less than or equal to 

*Convention is followed in using the capital to represent the value that might be
produced by employing the measurement process to obtain a measurement (i. , a random
variable), and the lower case to represent a particular value of observed.



Similar statements can be made for the probability that will be greater

than or equal to or for between and as follows: PfX
or Pfx

For .a measurement process that yields numbers on a continuous scale
the distribution of values of for the population can be represented by

a smooth curve, for example, curve C in Fig. 2- 1. C is called a frequency
curve. The area between C and the abscissa bounded by any two values
(xI and is the proportion of the population that takes values between
the two values, or the probability that will assume values between 

and x2. For example, the probability that can be represented by

the shaded area to the left of the total area between the frequency curve
and the abscissa being one by definition.

Note that the shape of C is not determined by and (J' alone. Any
curve C' enclosing an area of unity with the abscissa defines the distribution
of a particular population. Two examples, the uniform distribution and
the log-normal distribution are given in Figs. 2-2A and 2-28. These and
other distributions are useful in describing .certain populations.

30" 20" +0" +20" +30"

Ag. 2-1. A synunetrical distribution.

20" -0" +0" t20"

20" 40" 50- 60"

Ag. 2-2. (A) The uniform distribution (B) The log-normal distribution.



The Normal Distribution. For .data generated by a measurement process
the following properties are usually observed:

I. The results spread roughly symmetrically about a central value.
2. Small deviations from this central value are more frequently found

than large deviations.
A measurement process having these two properties would generate a fre-
quencycurve similar to that shown in Fig. 2-1 which is symmetrical and
bunched together about m. The study of a particular theoretical represen-
tation of a frequency curve of this type leads to the celebrated bell-shaped
normal curve (Gauss error curve.

). 

Measurements having such a normal

frequency curve are said to be normally distributed, or distributed in
accordance with the normal law of error.

The normal curve .can be represented , t:xactly by the mathematical
expreSSIOn

1/2((x-m)'/u

J2it 
(2-

where is the ordinate and the abscissa and 71828 is the base of
natural logarithms.

Some of the important features of the normal curve are:
1. It is symmetrical about 

2. The area under the curve is one, as required.
3. If cr is used as unit on the abscissa, then the area under the curve

between constant multiples of cr can be computed from tabulated
values of the normal distribution. In particular, areas under the curve
for some useful intervals between kcr and kcr are given in
Table 2- 1. Thus about two-thirds of the area lies within one cr of 

more than 95 percent within 2cr of and less than 0.3 percent beyond
3cr from 

Table 2-1. Area under normal curve between (T and k CT

6745 1.00 1.96 2.58
Percent area under

curve (approx. 50. 68.3 95. 95.5 99. 99.

4. From Eq. (2-0), it is evident that the frequency curve is completely
determined by the two parameters and cr.

The normal distribution has been studied intensively during the past
century. Consequently, if the measurements follow a normal distribution
we can say a great deal about the measurement process. The question
remains: How do we know that this is so from the limited number of
repeated measurements on hand?

The answer is that we don t! However, in most instances the metrologist
may be willing

1. to assume that the measurement process generates numbers that fol-
Iowa normal distribution approximately, and act as if this were so

2. to rely on the so-called Central Limit Theorem, one version of which
is the following

: "

If a population has a finite variance and mean
then the distribution of the sample mean (of independent

*From Chapter 7 Introduction to the Theory of Statistics, by A. M. Mood, McGraw~
Hill Book Company, New York, 1950.

.'6



measurements) approaches the normal distribution with variance

/n and mean as the sample size increases." This remarkable
and powerful theorem is indeed tailored for measurement processes.
First, every measurement process must by definition have a finite
mean and variance. Second, the sample mean is the quantity of
interest which, according to the theorem, will be approximately
normally distributed for large sample sizes. Third, the measure of
dispersion , i. , the standard deviation of the sample mean , is reduced
by a factor of l/-v'ii! This last statement is true in general for all
measurement processes in which the measurements are "independent"
and for all n. It is therefore not a consequence of the Central Limit
Theorem. The theorem guarantees, however, that the distribution of
sample means of independent measurements will be approximately
normal with the specified limiting meaIl' -and standard deviation
(I/-v'ii for large n.

In fact , for a measurement process with a frequency curve that is sym~

metrical about the mean, and with small deviations from the mean as
compared to the magnitude of the quantity measured, the normal approxi~
mation to the distribution of becomes very good even for as small as

3 or 4. Figure 2-3 shows the uniform and normal distribution having the
same mean and standard deviation. The peaked curve is actually two curves
representing the distribution of arithmetic means of four independent
measurements from the respective distributions. These curves are indis-
tinguishable to this scale.

0=4

1.8

1.6

1.4

1.2

0=1

6 -4 - 4 .

Ag. 2-3. Uniform and normal distribution of individual measure-
ments having the same mean and standard deviation, and
the corresponding distribution(s) of arithmetic means of
four independent measurements.

A formal definition of the concept of "independence" is out of the scope
here. Intuitively, we may say that 11 normally distributed measurements are
independent if these measurements are not correlated or associated in any



way. Thus, a sequence of measurements showing a trend or pattern are not
independent measurements.

There are many ways by which dependence or correlation creeps into
a set of measurement data; several of the common causes are the following:

1. Measurements are correlated through a factor that has not been
considered, or has been considered to be of no appreciable effect
on the results.

2. A standard correction constant has been used for a factor, e.
temperature, but the constant may overcorrect or undercorrect for
particular samples.

3. Measurements are correlated through time of the day, between days
weeks, or seasons.

4. Measurements are correlated through rejection of valid data, when
the rejection is based on the size of the' number in relation to others
of the group.

The traditional way of plotting the data in the sequence they are taken
or in some rational grouping, is perhaps still the most effective way of
detecting trends or correlation.

Estimates of Population Characteristics. In the above section it is shown
that the limiting mean and the variance (1"2 completely specify a measure-

ment process that follows the normal distribution. In practice and (1"
are not known and cannot be computed from a finite number of measure-
ments. This leads to the use of the sample mean as an estimate of the

limiting mean and the square of the computed standard deviation of
the sample, as an estimate of the variance. The standard deviation of the
average of measurements (Jim, is sometimes referred to as the standard
error of the mean, and is estimated by sf 

We note that the making of independent measurements is equivalent
to drawing a sample of size at random from the population of measure-
ments. Two concepts are of importance here:

I. The measurement process is established and under control , meaning
that the limiting mean and the standard deviation do possess definite
values which will not .change over a reasonable period of time.

2. The measurements are randomly drawn from this population, implying
that the values are of equal weights, and there is no prejudice in the
method of selection. Suppose out of three measurements the one
which is far apart from the other two is rejected, then the result will
not be a random sample.

For a random sample we can say that is an unbiased estimate of 
and is an unbiased estimate of (1" , i. , the limiting mean of is equal to

and of to (1" , where

~ ~ 

;=1

and

1; (Xi xy 
~ r

X~ 

(~ 

I ;=1 - I 
In addition , We define

= computed standard deviation

Examples of numerical calculations of and and are shown in
Tables 2-5 and 2-



Interpretation and Computation of
Confidence Interval and Limits

By making sets of measurements each , we can compute and arrange
k, x' and in a tabular form as follows:Set Sample mean Sample standard deviation

, .

In the array of no two will be likely to have exactly the same value.
From the Central Limit Theorem it can be deduced that the will be

approximately normally distributed with standard deviation aj.../fl:. The
frequency curve of will be centered about the limiting mean and will
have the scale factor aim. In other words will be centered .about
zero, and the quantity

x-m
aim

has the properties of a single observation from the "standardized" normal
distribution which has a mean of zero and a standard deviation of one.

From tabulated values of the standardized normal distribution it is known
that 95 percent of values will be hounded between - 1.96 and + 1.96.
Hence the statement

x~m
1.96 ~ aim ~ +1.96

or its equivalent

1.96 J-n 1.96 J-n
will be correct 95 percent of the time in the long run. The interval

L96(alm) to I.96(aj.../fl:) is called a confidence interval for 

The pr:obability that the confidence interval will cover the limiting mean
95 in this case, is called the confidence level or confidence coefficient. The

values of the end points of a confidence interval are called confidence limits.
It is to be borne in mind that will fluctuate from set to set, and the interval
calculated for a particular Xj mayor may not cover 

I n the above discussion we have selected a two-sided interval sym-
metrical about x. For such intervals the confidence coefficient is usually
denoted by I a, where al2 is the percent of the area under the frequency
curve of that is cut off from each tail.

In most cases (J is not known and an estimate of is computed from
the same set of measurements we use to calculate x. Nevertheless, let us
form a quantity similar to which is

x-mt=-
I .../fl:



and if we know the distribution of we could make the same type of state~
ment as before. In fact the distribution of is known for the case of normally
distributed measurements.

The distribution of was obtained mathematically by William S. Gosset

under the pen name of "Student " hence the distribution of is called the
Student's distribution. In the expression for both and s fluctuate from
set to set of measurements. Intuitively we will expect the value of to be

larger than that of z for a statement with the same probability of being
correct. This is indeed the case. The values of are listed in Table 2-

Table A brief table of values of 

Degrees of Confidence Level: I ~ a
freedom

500 900 950 990

000 6.314 12.706 63.657
816 920 303 925
765 353 3.182 841
741 2.132 776 604
727 015 571 032
718 1.943 2.447 707
711 895 365 3.499
700 1.812 228 169
691 1.753 131 947
687 1.725 086 845
683 1.697 042 750
679 671 000 660
674 645 960 576

*Adapted from Biometrika Tables for Statisticians Vol. I , edited by E. S. Pearson
and H. O. Hartley, The University Press, Cambridge, 1958.

To find a value for we need to know the "degrees of freedom (v)
associated with the computed standard deviation s. Since is calculated

from the same n numbers and has a fixed value, the nth value of Xi is com-
pletely determined by and the other (n l)x values. Hence the degrees

of freedom here are n ~ 

Having the table for the distribution of and using the same reasoning

as before, we can make the statement thats -
"Jn -c:;m-c:;x . t"Jn

and our statement will be correct 100 (1 ~ a) percent of the time in the long
run. The value of depends on the degrees of freedom and the proba-
bility level. From the table, we get for a confidence level of 0. , the follow-
ing lower and upper confidence limits:

Lt t(sl"Jn)
12. 706(sl..Jn)

303(sl"Jn)
3. I 82(sl"Jn)

Lu = t(sl ,,In)
12.706(sl"Jn)

303(s/"Jn)
182(sl"Jn)

The value of for 00 is 1. , the same as for the case of known 
Notice that very little can be said about with two measurements. However
for n larger than 2 , the interval predicted to contain narrows down steadily,
due to both the smaller value of t and the divisor "';n.



It is probably worthwhile to emphasize again that each particular con-
fidence interval computed as a result of measurements will either include

or fail to include m. The probability statement refers to the fact that 
we make a long series of sets of measurements, and if we compute a
confidence interval for from each set by the prescribed method , we would
expect 95 percent of such intervals to include 

100

Fig. 2-4. Computed 90% confidence intervals for 100 samples of size 4 drawn at
random from a normal population with = 10, (J' = 1.

Figure 2-4 shows the 90 percent confidence intervals (P = 0.90) computed
from 100 samples of = 4 from a normal population with , and

= I. Three interesting features are to be noted:
I. The number of intervals that include actually turns out to be 90

the expected number.
2. The surprising variation of the sizes of these intervals.
3. The closeness of the mid-points of these intervals to the line for the

mean does not seem to be related to the spread. In samples No.
and No. , the four values must have been very close together, but
both of these intervals failed to include the line for the mean.

From the widths of computed confidence intervals, one may get an
intuitive feeling whether the number of measurements is reasonable and
sufficient for the purpose on hand, It is true that, even for small the
confidence intervals will cover the limiting mean with the specified proba-
bility, yet the limits may be so far apart as to be of no practical significance.
For detecting a specified magnitude of interest, e. , the difference between
two means, the approximate number of measurements required can be
solved by equating the half-width of the confidence interval to this difference
and solving for using when known , or using :; by trial and error if 
not known. Tables of sample sizes required for certain prescribed condi-
tions are given in reference 4.

Precision and Accuracy

Index of preeision. Since is a measure of the spread of the frequency
curve about the limiting mean may be defined as an index of precision.
Thus a measurement process with a standard deviation U, is said to be
more precise than aI1other with a standard deviation U2 if U, is smaller than
u2. (In fact is really a measure of imprecision since the imprecision is
directly proportional to 



Consider the means of sets of independent measurements as a new
derived measurement process. The standard deviation of the new process
is aim. It is therefore possible to derive from a less precise measurement
process a new process which has a standard deviation equal to that of a
more precise process. This is accomplished by making more measurements.

Suppose n1, n12, but (1"1 2(1"2' Then for a derived process to have

(1"; (1"2, we need

(1" 1 2(1" 2
(1"1 

-- 

or we need to use the average of four measurements as a single measurement.
Thus for a required degree of precision, the number of measurements
and n2, needed for measurement processes I, ~nd II is proportional to the
squares of their respective standard deviations (variances), or in symbols

(1"i

n2 (1"2

If (1" is not known, and the best estimate we have of (1" is a computed
standard deviation based on measurements, then could be used as an

estimate of the index of precision. The value of however, may vary con-
siderably from sample to sample in the case of a small number of measure-
ments as was shown in Fig. 2- , where the lengths of the intervals are
constant multiples of computed from the samples. The number or the

degrees pf freedom must be considered along with s in indicating how
reliable an estimate s is of (1". In what follows , whenever the terms standard
deviation about the limiting mean ((1"), or standard error of the mean (ax
are used , the respective estimates sand slm may be substituted, by taking
into consideration the above reservation.

In metrology or calibration work, the precision of the reported value is
an integral part of the result. In fact , precision is the main criterion by which
the quality of the work is judged. Hence , the laboratory reporting the value
must be prepared to give evidence of the precision claimed. Obviously an
estimate of the standard deviation of the measurement process based only
on a small number of measurements cannot be considered as convincing

evidence. By the use of the control chart method for standard deviation
and by the calibration of one s own standard at frequent intervals. as
subsequently described, the laboratory may eventually claim that the
standard deviation is in fact known and the measurement process is stable
with readily available evidence to support these claims.

InterprefClfion of Precision. Since a measurement process generates
numbers as the results of repeated measurements of a single physical quantity
under essentially the same conditions, the method and procedure in obtaining
these numbers must be specified in detail. However, no amount of detail
would cover all the contingencies that may arise, or cover all the factors
that may affect the results of measurement. Thus a single operator in a
single day with a single instrument may generate a process with a precisi~)n
index measured by (1". Many operators measuring the same quantity over
a period of time with a number of instruments will yield a precision index
measured by (1" . Logically (1" ' must be larger than a, and in practice it is
usually considerably larger. Consequently, modifiers of the words precision
are recommended by ASTM* to qualify in an unambiguous manner what

Use of the Terms Precision and Accuracy as Applied to the Measurement of a
Property of a Material," ASTM Designation , EI77-61T, 1961.



is meant. Examples are "single-operator-machine

" "

multi-laboratory,
single-operator-day," etc. The same publication warns against the use of

the terms "repeatability" and "reproducibility" if the interpretation of these

terms is not clear from the context.
The standard deviation () or the standard error ()/,.,j/i can be considered

as a yardstick with which we can gage the difference between two results
obtained as measurements of the same physical quantity. . If our interest is
to compare the results of one operator against another, the single-operator
precision is probably appropriate, and if the two results differ by an amount
considered to be large as measured by the standard errors, we may conclude
that the evidence is predominantly against the two results being truly equal.
In comparing the results of two laboratories, the single-operator precision
is obviously an inadequate measure to use, since the precision of each
laboratory must include factors such as multi~'operator-day-instruments.

Hence the selection of an index of precision depends strongly on the
purposes for which the results are to be used or might be used. It is common
experience that three measurements made within the hour are closer together
than three measurements made on , say, three separate days. However
an index of precision based on the former is generally not a justifiable
indicator of the quality of the reported value. For a thorough discussion

on the realistic evaluation of precision see Section 4 of reference 2.

Accuracy. The term "accuracy" usually denotes in some sense the close-
ness of the measured values to the true value, taking into consideration

both precision and bias. Bias, defined as the difference between the limiting
mean and the true value , is a constant, and does not behave in the same
way as the index of precision, the standard deviation. In many instances.
the possible sources of biases are known but their magnitudes and directions
are not known. The .overall bias is of necessity reported in terms of estimated
bounds that reasonably include the combined effect of all the elemental

biases. Since there are no accepted ways to estimate bounds for elemental
biases, or to combine "them, these should be reported and discussed in

sufficient detail to enable others to use their own judgment on the matter.
It is recommended that an index. of accuracy be expressed as a pair of

numbers , one the credible bounds for bias, and the other an index of pre-
cision, usually in the form of a multiple of the standard deviation (or
estimated standard deviation). The terms "uncertainty" and " limits of error

are sometimes used to express the sum of these two components , and their

meanings are ambiguous unless the components are spelled out in detail.

STATISTICAL ANALYSIS

OF MEASUREMENT DATA

J n the last section the basic concepts of a measurement process were

given in an expository manner. These concepts. necessary to the statistical
analysis to be presented in this section, are summarized and reviewed below.
By making a measurement we obtain a number intended to express quanti-
tatively a measure of "the property of a thing." Measurement numbers
differ from ordinary arithmetic numbers, and the usual "significant figure
treatment is not appropriate. Repeated measurement of a single physical



quantity under essentially the same conditions generates a sequence of
numbers Xl, x2, 

'. . . , 

Xn. A measurement process is established if this con-
ceptually infinite sequence has a limiting mean and a standard deviation (Y.

For many measurement processes encountered in metrology, the sequence
of numbers generated follows approximately the normal distribution
specified completely by the two quantities and (Y' Moreover, averages of

independent measurement numbers tend to be normally distributed with
the limiting mean and the standard deviation (Y/,.jn regardless of the

distribution of the original numbers. Normally distributed measurements
are independent if they are not correlated or associated in any way. A
sequence of measurements showing a trend or pattern are not independent
measurements. Since and (Y are usually not known , these quantities are
estimated by calculating and from measurements , where

- ~ 

and

-L (Xi X)2 ~:i t X~ 

(~ Xi

Ill 

The distribution of the quantity (x m)/(s/,.,;/l) (for normally
distributed) is known. From the tabulated values of (see Table 2-2), con-
fidence intervals can be constructed to bracket for a given confidence

coefficient 1 (probability of being correct in the long run).

The confidence limits are the end points of confidence intervals defined by

,.,;/l

Lv. 

== 

,.,;/l
where the value of is determined by two parameters , namely, the degrees
of freedom associated with and the confidence coefficient I-a.

The width of a confidence interval gives an intuitive measure of the
uncertainty of the evidence given by the data. Too wide an interval may
merely indicate that more measurements need to be made for the objective
desired.

Algebra for the Manipulation of Limiting
Means and Variances

8asic Formulas. A number of basic formulas are extremely useful in
dealing with a quantity which is a combination of other measured quantities.

I. Let m", and be the respective limiting means of two measured
quantities and Y, and , b be constants , then

m",+y m", 

(2- 1 )y m

", 

a"'+i)y 

", 

2. If, in addition and Yare independent, then it is also true that
m",y m", (2-

For paired values of and Y, we can form the quantity Z, with

(X m", )(Y (2-



Then by formula (2-2) for independent variables

m(x- m(y-mv

(mx )(rn = 0

Thus mz 0 when and Yare independent.

3. The limiting mean of Z in (2-3) is defined as the covariance of 
and Yand is usually denoted by cov , V), or xy. The covariance, similar
to the variance , is estimated by

Sxy L: (Xi X)(Yi - ji) (2-

Thus if and are correlated in such a way that paired values are likely
to be both higher or lower than their respectiv'e' means, then Sxy tends to be
positive. If a high value is Jjkely to be paired with a low value, and vice
versa , then Sxy tends to be negative. If and Yare not correlated Sxy tends
to zero (for large n).

4. The correlation coefficient is defined as:

a- X

p=-

a- xa- y
(2-

and is estimated by

Sxy L: (Xi X)(Yi - ji)
..J L: (Xi 

- xy L: (Yi ji)2
(2-

Both and lie between - I and + I.
5. Let a-~ and if; be the respective variances of and and a- xy the

covariance of and then

a-~+y a-~ a-~ 2a-xy

O'~-y a-~ if; 2a-XY
(2- 7)

If and Yare independent a-Xll = 0, then

a-~+y a-~ 0'; = a-~- (2-

Since the variance of a constant is zero, we have

(J'~X+b a-~
(2-

a-~X+by a-~ a-; 2aba- xy

In particular, if and Yare independent and normally distributed , then
aX bY is normally distributed with limiting mean amx and
variance a-~ a-;.

For measurement situations in general , metrologists .usually strive to
get measurements that are independent, or can be assumed to be inde-
pendent. The case when two .quantities are dependent because both are
functions of other measured quantities will be treated under propagation of
error formulas (see Eq. 2- 13).

6. Standard errors of the sample mean and the weighted means (of
independent measurements) are special cases of the above. Since

(lJn) L: Xi and the x;'s are independent with variance a-~, it follows

by (2-9), that

(J'
2 +... 

(J'
a-;

XI X2 Xn n

as previously stated.

(2-10)



If .x\ is an average of values, and X2 is an average of values, then for
the over-all average it is logical to compute

- - 

XI + 

'" + 

Xk Xk+I 

+ '" + 

Xk+nx- k+n
and o-~ ~/(k + n). However, this is equivalent to a weighted mean of
x\ and X2' where the weights are proportional to the number of measurements
in each average, i.

WI W2 

and
WI W2 

XI 
WI W2 WI + 

dI'-'------ XI + n+k n+k
Since

o-i, - 0- /k 
o-t

the weighting factors WI and W2 are therefore also inversely proportional
to the respective variances of the averages. This principle can 

be extended
to more than two variables in the following manner.

Let XI' X2' 

. . . , 

Xk be a set of averages estimating the same quantity.
The over-all average may be computed to be

/ +

(WI XI + X2 

+ '" + 

+W2

+'" 

where

WI 
o-Xl

i:2

... ,

o-Xk

The variance of , by (2-9),

0--
WI W2 

+ '" + 

(2- 11 )

In practice, the estimated variances si will have to be used in the above
formulas , and consequently the equations hold only as approximations.

Propagation of error formulas. The results of a measurement process
can usually be expressed bya number of averages ji, . . . , and the standard
errors of these averages Si: s /5, S /,J/(, etc. These results, however
may not be of direct interest; the quantity of interest is in the functional
relationship f(mx, m

). 

It is desired to estimate mw by Wi f(x ji)and
to compute Sijj as an estimate of O-w.

If the errors of measurements of these quantities are small in comparison
with the values measured, the propagation of error formulas usually work
surprisingly well. The o-~, o-t and o-~ that are used in the following formulas
will often be replaced in practice by the computed 

values s~, s~, and s~.
The general formula for o-~ is given by

o-~ 

ro-~ + l~;r~~ + JpXYo-Xo-

where the partial derivatives in square brackets are to be evaluated at the
averages of and 

y. 

If and Yare independent = 0 and therefore the
last term equals zero. If and Yare measured in pairs Sxy (Eq. 2-4) can be
used as an estimate of pxyo-xo-

(2- 12)



If is functionally related to and 

mw f(mu, mJ

and both and are functionally related to and 

mu g(m"" m

h(m"" m

then and are functionally related. We will need the covariance
UufJ PufJ UfJ to calculate u~. The covariance UflfJ is given approximately by

flfJ 

= (

Ju~ Ju$

+ f( J +

(~;

J~PXYUX

The square brackets mean , as before, that the partial derivatives are to be

evaluated at and 

y. 

If and Yare independent, the last term again
vanishes.

These formulas can be extended to three or more variables if necessary.
For convenience, a few special formulas for commonly encountered functions
are listed in Table 2-3 with Yassumed to be independent. These may be
derived from the above formulas as exercises.

(2- 13)

Table 3. Propagation of error formulas for some simple functions

(X and Yare assumed to be independent.

Function form Approximate formula for 

u- 

m =W m

si 

\~~

siJ

)\Psi x2oE)1l' 

", 

I + (I + x)~

si 
x y --='? -=0x- 

if 

,,- 

Il' 

,,- 

Inm sj.

ll- km~mt -'f 
0) 

b" S~\a- ).2

2.i

Hi2 (not directly derived from
2(n I) the formulas)t

", 

emx

= 100 
(=coeffi~ient

f of variation)

*Oistribution of Hi is highly skewed and normal approximation could be seriously
in error for small 

tSee. for example. Statistical Theory with Engineering Applications. by A. Hald. John

Wiley & Sons. Inc,. New York. 1952. p. 301.



In these formulas , if
(a) the partial derivatives when evaluated at the averages are small, and
(b) (J"x, (J" are small compared to x, y,

then the approximations are good and IV tends to be distributed normally
(the ones marked by asterisks are highly skewed and normal approximation
could be seriously in error for small n).

Pooling Estimates of Variances. The problem often.arises that there are
several estimates of a common variance (J"2 which we wish to combine into
a single estimate. For example, a gage block may be compared with the
master block nl times , resulting in an estimate of the variance si. Another
gage block compared with the master block n2 times , giving rise to s~, etc.
As long as the nominal thicknesses of these blocks are within a certain
range, the precision of calibration can be apected to remain the same.
To get a better evaluation of the precision of the calibration process , we
would wish to combine these estimates. The rule is to combine the computed
variances weighted by their respective degrees of freedom , or

si S~ 

+ ... + 

Si,P VI +V2 +..'+Vk (2- 14)

The pooled estimate of the standard deviation, of course, is 
In the example, VI = nl - I V2 n2 - I

,. . .

Vk nk - I , thus the
expression reduces to

(nl l)si+(n2 l)s~+ 

... 

+(nk I)si,p nl +n2 +...+nk (2- 15)

The degrees of freedom for ~he pooled estimate is the sum of the degrees
of freedom of individual estimates, or VI + V2 

+ ... 

Vk nl + n2 

+ . . .

nk k. With the increased number of degrees of freedom is a more
dependable estimate of (J" than an individual s. Eventually, we may consider
the value of to be equal to that of (J" and claim that we know the precision
of the measuring process.

For the special case where sets of duplicate measurements .are available
the above formula reduces to:

I ~ 

1" i (2- 16)

where di difference of duplicate readings. The pooled standard deviation
has degrees of freedom.
For sets of normally distributed measurements where the number 

measurements in each set is small , say less than ten, an estimate of the

standard deviation can be obtained by multiplying the range of these meas-
urements by a constant. Table 2-4 lists these constants corresponding to the
number of measurements in the set. For large considerable information
is lost and this procedure is not recommended.

If there are sets of measurements each, the average range Rcan be
computed. The standard deviation can be estimated by multiplying the
average range by the factor for 



Table 2-4. Estimate of (J' from the range

Multiplying factor
886

0.591
0.486
0.430

395
370
351
337

0.325

*Adapted from Biometrika Tables for Statisticians, Vol. t , edited by E. S. Pearson
and H. O. Hartley, The University Press , Cambridge, 1958.

" '

Component of VClr;Clnce Between Groups. In pooling estimates of vari-
ances from a number of subgroups , we have increased confidence in the value
of the estimate obtained. Let us call this estimate the within-group standard
deviation , a- w' The within-group standard deviation a- is a proper measure
of dispersions of values within the same group, but not necessarily the
proper one for dispersions of values belonging to different groups.

If in making calibrations there is a difference between groups, say from
day to day, or from set to set, then the limiting meanS of the groups are
not equal. These limiting means may be thought .of as individual measure-
ments; thus, it could be assumed that the average of these limiting means
will approach a limit which can be called the limiting mean for all the groups.
In estimating u;", the differences of individuals from the respective group
means are used. Obviouslya- does not include the differences between
groups. Let us use o-~ to denote the variance corresponding to the differences
between groups , i. , the measure of dispersion of the limiting means of the
respective groups about the limiting mean for all groups.

Thus for each individual measurement the variance of has two

components , and

For the group mean with measurements in the group,

2 = a-~ + a-;"

a-;"
a-i; =a-b

If groups of measurements are available giving averages XI' X2, 

. . . ,

Xk, then an estimate of a-~ is

1 ~ 
Sj; ",," XI

1;=1

with I degrees of freedom , where is the average of all nk measure~
ments.

The resolution of the total variance into components attributable to
identifiable causes or factors and the estimation of such components of
variances are topics treated under analysis of variance and experimental
design. For selected treatments and examples see references 5, 6 , and 8.



Comparison of Means and Variances

Comparison of means is perhaps one of the most frequently used tech-
niques in metrology. The mean obtained from one measurement process
may be compared with a standard value; two series of measurements on
the same quantity may be compared; or sets of measurements on more than
two quantities may be compared to determine homogeneity of the group
of means.

It is to be borne in mind in all of the comparisons discussed below
that We are interested in comparing the limiting means. The sample means
and the computed standard errors are used to calculate confidence limits
on the difference between two means. The "

" .

statistic derived from normal
distribution theory is used in this procedure since we are assuming either
the measurement process is normal, or the ~ample averages are approxi-
mately normally distributed.

Comparison of G Mean with G Standard VG/ue. In calibration of

weights at the National Bureau of Standards, the weights to be calibrated are
intercompared with sets of standard weights having "accepted" corrections.
Accepted corrections are based on years of experience and considered to be
exact to the accuracy required. For instance, the accepted correction for the
NB' IO gram weight is -0.4040 mg.

The NB' IO is treated as an unknown and calibrated with each set of
weights tested using an intercomparison scheme based On a IOO-gm standard
weight. Hence the observed correction for NB' IO can be computed for each
particular calibration. Table 2-5 lists .eleven observed corrections of N B' 
during May 1963.

Calculated 95 percent confidence limits from the eleven observed cor-
rections are -0.4041 and - 3995. These values include the accepted value
of -0.4040, and we conclude that the observed corrections agree with the
accepted value.

What if the computed confidence limits for the observed correction do
not cover the accepted value? Three explanations may be suggested:

1. The accepted value is correct. However, in choosing = 0. , we
know that 5 percent of the time in the long run we will make an
error in our statement. By chance alone, it is possible that this par-

ticular set of limits would not cover the accepted value.
2. The average of the observed corrections does not agree with the

accepted value because of certain systematic error, temporary or
seasonal, particular to one or several members of this set of data for
which no adjustment has been made.

3. The accepted value is incorrect, e. , the mass of the standard has
changed.

In our example, we would be extremely reluctant to agree to the third
explanation since we have much more confidence in the accepted value than
the value based only on eleven calibrations. We are warned that something
may have gone wrong, but not unduly alarmed since such an event will
happen purely by chance about once every twenty times.

The control chart for mean with known value, to be discussed in a
following section , would be the proper tool to use to monitor the constancy
of the correction of the standard mass.



Table 2-5. Computation of confidence limits for ob:;erved corrections, NB' lO gm "'

Date Xi Observed Corrections to standard 10 gm wt in mg

63 
63 2
63 
63 4
63 
63 6

6-63 7
63 
63 
63 
63 

0.4008
~0.4053
~0.4022

4075
0.3994
0.3986
0.4015

3992
3973

0.4071
0.4012

Xi 

= -

4.4201

= -

0.40183 mg

xI = 1.77623417

(~ 

= 1.77611673

2 = (0,00011744) = 0,000011744

S = 0,00343 = computed standard deviation of an observed correction about the mean.

= 0.00103 = computed standard deviation of the mean of eleven corrections.
= computed standard error of the mean,

For a two-sided 95 percentcon.fidenceinterval for the mean of the above sample of
size 11 a/2 = 0.025, 10, and the corresponding value of is equal to 2,228 in the
table of distribution. Therefore

Ll 

= --

0.40183 - 2.228 x 0,00103 = - 0.40412

and

lI 

= .

X' + 

= -

0.40183 + 2,228 x 0.00103 = - 39954

difference = 0.00011744

*Data supplied by Robert Raybold , Metrology Division , National Bureau of Standards.

Comparison Among Two or More Means. The difference between two
quantities and to be measured is the quantity

mx_ mx 

and is estimated by :X 

y, 

where and yare averages of a number of
measurements of and respectively.

Suppose we are interested in knowing whether the difference mx- could
be zero. This problem can be solved by a technique previously introduced,

, the confidence limits can be computed for mx_

y, 

and if the upper and
lower limits include zero , we could conclude that mx_ may take the value
zero; otherwise, we conclude that the evidence is against mx-

Let us assume that measur(;ments of and Yare independent with
known variances ()~ and (); respectively.

By Eq. (2. 10)

2 = ,2. for 
of measurements

()~()j, 

for of measurements

then by (2. 8),



2. - 
u;, U y

Therefore, the quantity
(x 

y) 

- 0

J:~
is approximately normally distributed with mean zero and a standard
deviation of one under the assumption mx-

If Ux and are not known , but the two can be assumed to be approxi-
mately equal, e. and yare measured by the same process, then s~ and
s~ can be pooled by Eq. (2- 15), or

(n l)s~ (k l)s~
.~ 2

, '

(2- 17)

This pooled computed variance estimates

u~ 

so that

2. 

Thus, the quantity
(x 

y) 

- 0

In ;tk k

is distributed as Student's " , and a confidence interval .can be set about
mx-y with - 2 and I-a. If this interval does not include
zero , we may conclude that the evidence is strongly against the hypothesis

(2- 18)

mx 

As an example, we continue with the calibration of weights with
NB' lO gm. For II subsequent observed corrections during September and
October, the confidence interval (computed in the same manner as in the
preceding example) has been found to be

Ll 

= -

0.40782

Lu 0.40126
Also

y = -

0.40454 and 

'"Jk 

00147

It is desired to compare the means of observed corrections for the two sets
of data. Here

0.40183

s~ = 0.000011669

= -

40454

s~ = 0.000023813

s~ -!(0.000035482) = 0.000017741

n+k 11+11
---rik 121 = 

In ---rik . TI X 0.
000017741 = 0.00180



For al2 = 0.025 , 1 ~ = 0. , and 086. Therefore

(x ji) 
-/n ;tk k 00271 + 2.086 x 0.00180

= 0.00646

Lt (x ji) -/n
;tk k

001O4

Since Ll ~ 0 ~ Lu shows that the confidence interval includes zero, we
conclude that there is no evidence against the hypothesis that the two

observed average corrections are the same , or mx 

y. 

Note, however
that we would reach a conclusion of no difference wherever the magnitude
of ~ ji (0.00271 mg) is less than the half-width of the confidence interval
(2.086 X 0.00180 = 0.00375 mg) calculated for the particular case. When
the true difference mx- is large, the above situation is not likely to happen;
but when the true difference is small , say about 0.003 mg, then it is highly
probable that a concl usion of no difference will still be reached. If a detection
of difference of this magnitude is of interest, more measurements will

be needed.

The following additional topics are treated in reference 4.
l. Sample sizes required under certain specified conditions-Tables 

and 

2. ()~ cannot be assumed to be equal to ()~-Section 3-
3. Comparison of several means by Studentized range-Sections 3-

and 15-

Comparison of variances or ranges. As we have seen , the precision of
a measurement process can be expressed in terms of the computed standard
deviation, the variance, or the range. To compare the precision of two
processes and any of the three measures can be used , depending on
the preference and convenience of the user.

Let s~ be the estimate of ()~ with Va degrees of freedom , and s~ be the

estimate of (J"~ with Vb degrees of freedom. The ratio s~/s~ has a distri-
bution depending on Va and Vb' Tables of upper percentage points of 

are given in most statistical textbooks, e. , reference 4, Table and
Section 4-

In the comparison of means , we were interested in finding out if the
absolute difference between and mb could reasonably be zero; similarly,
here we may be interested in whether 

()~ 

()~, or 

()~/()~ 

1. In practice

however, we are usually concerned with whether the imprecision of one
process exceeds that of another process. We could , therefore, compute the
ratio of s~ to s~, and the question arises: If in fact 

()~ = 

()~, what is the
probability of getting a value of the ratio as large as the one observed?
For each pair of values of and Vb, the tables list the values of which are

exceeded with probability the upper percentage point of the distribution
of F. If the computed value of exceeds this tabulated value of 

then we conclude that the evidence is against the hypothesis 

()~ = 

()~; if it

is less , we conclude that ()~ could be eql!al to 

()~.

For example, we could compute the ratio of s~ to s~ in the preceding

two examples.

Here the degrees of freedom Vx = 10, the tabulated value of 

which is exceeded 5 percent of the time for these degrees of freedom is
, and

000023813
- 2041

s~ - 0.000011669 



Since 2.04 is less than 2. , we conclude that there is no reason to believe
that the precision of the calibration process in September and October is
poorer than that of May.

For small degrees of freedom , the critical value of is rather large

, for Vb = 3 , and = 0. 05, the value of is 9.28. It follows

that a small difference between O"~ and O"E is not likely to be detected with a
small number of measurements from each process. The table below gives
the approximate number of measurements required to have a four-out-
of-five chance of detecting whether is the indicated multiple of (Tb (while
maintaining at 0.05 the probability of incorrectly concluding that O"b,

when in fact O"b

Multiple
1.5

No. of measurements

Table A- II in reference 4 gives the critical values of the ratios of ranges
and Tables A-20 and A-21 give confidence limits on the standard deviation
of the process based on computed standard deviation.

Cont.rol Charts Technique for
Maintaining .Stability and Precision

A laboratory which performs routine measurement or calibration opera-
tions yields , as its daily product , numbers-averages , standard deviations
and ranges. The control chart techniques therefore could be applied to these
numbers as products of a manufacturing process to furnish graphical

evidence on whether the measurement process is in statistical control or out
of statistical control. If it is out of control , these charts usually also indicate
where and when the trouble occurred.

Control Chart for Averages, The basic concept of a control chart is
in accord with what has been disctlssed thus far. A measurement process
with limiting mean and standard deviation (J is assumed. The sequence
of numbers produced is divided into "rational" subgroups, e. , by day,

by a set of calibrations , etc. The averages of these subgroups are computed.
These averages will have a mean and a standard deviation 0"/ vn where

is the number of measurements within each subgroup. These averages
are approximately normally distributed.

In the construction of the control chart for averages is plotted as the
center line k(O"/vn) and k(O"/vn) are plotted as control limits,
and the averages are plotted in an orderly sequence. If is taken to be 3
we know that the chance of a plotted point falling outside of the limits
if the process is in control , is very small. Therefore, if a plotted point falls
outside these limits, a warning is sounded and investigative action to locate
the "assignable" cause that produced the departure , or corrective measures
are called for.

The above reasoning would be applicable to actual cases only if we have
chosen the proper standard deviation (T. If the standard deviation is estimated
by pooling the estimates computed from each subgroup and denoted by 0" w

(within group), obviously differences , if any, between group averages have



not been taken into consideration. Where there are between-group differences
the variance of the individual is not u;,/n but , as we have seen before
u~ (u;,/n), where u~ represents the variance due to differences between
groups. If u~ is of any consequence as compared to u;" many of the values
would exceed the limits constructed by using alone.

Two alternatives are open to us: (l) remove the cause of the between-
group variation; or, (2) if such variation is a proper component of error
take it into account as has been previously discussed.

As an illustration of the use of a control chart on averages, we use again
the NB' lO gram data. One hundred observed corrections for NB' lO are
plotted in Fig. 2- , including the two sets of data given under comparison
of means (points 18 through 28 , and points 60 through 71). A three-sigma
limit of 8.6 p,g was used based on the "accepted" valueof standard deviation.

We note that all the averages are within the control limits , excepting
numbers 36, 47, 63 , 85, and 87. Five in a hundred falling outside of the
three-sigma limits is more than predicted by the theory. No particular
reasons, however, could be found for these departures.

Since the accepted value of the standard deviation was obtained 
pooling a large number of computed standard deviations for within-sets of
calibrations, the graph indicates that a "between-set" component may be
present. A slight shift upwards is also noted between the first 30 points and
the remainder.
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FIg. 2-5. Control chart on j for NB' 10 gram.

Control ChQrt lor StQndQrd f)ev;(Jf;ons. The computed standard
deviation, as previously stated, is a measure of imprecision. For a set of
calibrations , however, the number of measurements is usually small, and
consequently also the degrees of freedom. These computed standard devia-
tions with few degrees of freedom can vary considerably by chance alone
even though the precision of the process remains unchanged. The control
chart on the computed standard deviations (or ranges) is therefore an indis-
pensable tool.

The distribution of depends on the degrees of freedom associated with
, and is not symmetrical about mo. The frequency curve of is limited on the

left side by zero, and has a long "tail" to the right. The limits, therefore



are not symmetrical about ms. Furthermore, if the standard deviation of
the process is known to be (1" ms is not equal to (1", but is equal to (1" where
C2 is a constant associated with the degrees of freedom in s.

The constants necessary for the construction of three-sigma control
limits for averages, computed standard deviations, and ranges, are given
in most textbooks on quality control. Section 18-3 of reference 4 gives
such a table. A more comprehensive treatment on control charts is given
in ASTM "Manual on Quality Control of Materials " Special Technical

Publication IS-
Unfortunately, the notation employed in quality control work differs

in some respect from what is now standard in statistics, and correction
factors have to be applied to some of these constants when the computed
standard deviation is calculated by the definition given in this chapter.
These corrections are explained in the footnote under the table.

As an example of the use of control charts on the precision of a cali-
bration process, we will use data from NBS calibration of standard cells. *

Standard cells in groups of four or six are usually compared with an NBS
standard cell on ten separate days. A typical data sheet for a group of
six cells, after all the necessary corrections, appears in Table 2-6. The stan-
dard deviation of a comparison is calculated from the ten comparisons for
each cell and the standard deviation for the average value of the ten com-
parisons is listed in the line marked SDA. These values were plotted as
points 6 through II in Fig. 2-
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Fig. 2-6. Control chart ons for the calibration of standard cells.

Let us assume that the precision of the calibration process remains the
same. We can therefore pool the standard deviations computed for each
cell (with nine degrees of freedom) over a number of cells and take this
value as the current value of the standard deviation of a comparison, (1".

The corresponding current value of standard deviation of the average of
ten comparisons will be denoted by (1" (1"/,.jT(j. The control chart will be
made on s/,.jT(j.

*IIlustrative data supplied by Miss Catherine Law, Electricity Division, National

Bureau of Standards.



For example, the SDA's for 32 cells calibrated between June 29 and
August 8, 1962, are plotted as the first 32 points in Fig. 2-6. The pooled
standard deviation of the average is 0. 114 with 288 degrees of freedom. The
between-group component is assumed to be negligible.

Table 2- Calibration data for six standard cells

Day Corrected Emf' s and standard deviations, Microvolts

27. 24. 31.30 33.30 32. 23.
25. 24. 31.06 34.16 33. 23.
26. 24, 31. 33. 33. 24.
26. 24. 31.26 33. 33. 24.16
27. 25. 31.53 34. 33. 24.43
25. 24.40 31.80 33. 32. 24.10
26. 24, 32. 34. 33.39 24.
26. 24. 32.18 35. 33. 24.
26. 25. 31.97 34. 33. 23.
26. 25. 31.96 34. 32. 24.

1.331 1.169 1.127 777 677 233
AVG 26. 378 24.738 31. 718 34. 168 33. 168 24.058

0.482 0.439 402 0.495 0.425 366
SDA 153 139 0.127 157 134 116

Position Emf, volts Position Emf, volts

1.0182264 1.0182342
1.0182247 1.0182332
1.0182317 1.0182240

Since 10, we find our constants for three-sigma control limits on 

in Section 18-3 of reference 4 and apply the corrections as follows:

Center line 

,) 

n n 
1.054 x 0.9227 x 0. 114 111

Lower limit = 

,) 

n n 
1.054 x 0.262 x 0. 114 = 0.031

Upper limit = 

,) 

n n 
1.054 x 1.584 x 0. 114 = 0.190

The control chart (Fig. 2-6) was constructed using these values of center
line and control limits computed from the 32 calibrations. The standard
deviations of the averages of subsequent calibrations are then plotted.

Three points in Fig. 2-6 far exceed the upper control limit. All three cells
which were from the same source, showed drifts during the period of
calibration. A fourth point barely exceeded the limit. It is to be noted that
the data here were selected to include these three points for purposes of
illustration only, and do not represent the normal sequence of calibrations.

The main function of the chart is to justify the precision statement on
the report of calibration , which is based on a value of u estimated with
perhaps thousands of degrees of freedom and which is shown to be in control.
The report of calibration for these cells (u 0.117 12) could read:

Each value is the mean of ten observations made between and . Based on a standard deviation of O. I2 microvolts for the
means, these values are correct to 0.36 microvolts relative to the
volt as maintained by the national reference group.



Linear Relationship and Fitting of
Constants by Least Squares

In using the arithmetic mean of n measurements as an estimate of the
limiting mean, we have, knowingly or unknowingly, fitted a constant to
the data by the method of least squares, i.e. , we have selected a value 
for such that

(Yt m)2 L d~

is a minimum. The solution is 

y. 

The deviations dt = Yt Yt 

are called residuals.

Here we can express our measurements in the form of a mathematical
model

Y .

+ € ' '

(2- 19)

where Y stands for the observed values the limiting mean (a constant),
and € the random error (normal) of measurement with a limiting mean zero
and a standard deviation (T. By (2- 1) and (2-9), it follows that

and
(1'; 

The method of least squares requires us to use that estimator for such
that the sum of squares of the residuals is a minimum (among all possible
estimators). As a corollary, the method also states that the sum of squares
of residuals divided by the number of measurements n less the number of
estimated constants p will give us an estimate of 

~ L (Yt m)2 (Yt y)2p n~
It is seen that the above agrees with our definition of S

Suppose Y, the quantity measured , exhibits a linear functional relation-
ship with a variable which can be controlled accurately; then a model can
be written as

(2-20)

Y = bX + € (2-21)

where , as before, Y is the quantity measured, (the intercept) and (the

slope) are two constants to be estimated, and € the random error with
limiting mean zero and variance We set at Xi, and observe Yt. For
example, Yi might be the change in length of a gage block steel observed for
n equally spaced temperatures Xi within a certain range. The quantity of
interest is the coefficient of thermal expansion 

For any estimates of and say and we can compute a value 

for each Xi, or

Yt bxt

If we require the sum of squares of the residuals

(Yt 
i=1

to be a minimum, then it can be shown that

'" L (Xt X)(Yi 

t=1 

(x! x)2
t=1

(2-22)



and

The variance of can be estimated by

L; (Yi 

- 2

(2-23)

(2-24)

with - 2 degrees of freedom since two constants have been estimated
from the data.

The standard errors of and are respectively estimated by Sh and Sa,

where

s~ 

L; (Xi - xY
(2-25)

sa 

L; (X~=-' X)2J (2-26)

With these estimates and the degrees of freedom associated with con-
fidence limits can be computed for and for the confidence coefficient
selected if we assume that errors are normally distributed.

Thus, the lower and upper limits of and respectively, are:

Isa,

Ish,

ISa

Ish

for the value of corresponding to the degree of freedom and the selected
confidence coefficient.

The following problems relating to a linear relationship between two
variables are treated in reference 4, Section 5-

1. Confidence intervals for a point on the fitted line.
2. Confidence band for the line as a whole.
3. Confidence interval for a single predicted value of for a given 

Polynomial and multivariate relationships are treated in Chapter 6 
the same reference.
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POSTSCRIPT

STATISTICAL GRAPHICS

Over the years since the publication of the abo.ve article , it has become
apparent that so.me additio.ns o.n recent develo.pments for the treatment o.f
data may be useful. It is equally apparent that the concepts and techniques
intro.duced in the o.riginal article remain as valid and appro.priate as when
first written. For this reaso.n , a few additio.nal sectio.ns on statistical graphics
are added as .a postscript.

The po.wer of small computers and the asso.ciated so.phisticated so.ftware
have pushed graphics into. the forefront. Plots and graphs have always been
po.pular with engineers and scientists, but t~e~r use has been limited by
the time and wo.rk involved. Graphics packages now-a-days allo.w the user
to. do. plo.ts and graphs with ease , and a good statistical package will also
auto.matically present a number o.f pertinent plo.ts for examination. As John
Tukey said

, "

the greatest value o.f a picture is when it fo.rces us to. no.tice
what we never expected to see." 11J An o.utlier? Skewed distributio.n o.f
values? Po.o.r mo.delling? What is the data trying to. say? Answers to.
all these co.me naturally through inspectio.n o.f plots .and graphs , whereas
co.lumns o.f numbers reveal little , if anything.

Co.ntro.l charts for the mean (Fig. 2-5) and standard deviatio.n (Fig. 2-
are classical examples o.f graphical metho.ds. Co.ntro.l charts were intro.duced
by Walter Shewhart so.me 60 years ago. , yet the technique remains a po.pular
and most useful tool in business and industry. Simplicity (o.nce co.nstructed),
self-explanato.ry nature , and robustness (no.t depending o.n assumptions) are
and sho.uld be , the main desirable attributes o.f all graphs and plo.ts.

Since statistical graphics is a huge subject , only a few basic techniques
that are particularly useful to. the treatment o.f measurement data will be
discussed , together with references fo.r further reading.

Plots for Summary and Display of Data

Stem and Leaf. The stem and leaf plot is a clo.se relative o.f the his-
togram, but it uses digits of data values themselves to sho.w features of the
data set instead o.f areas of rectangles. First pro.posed by John W. Tukey,
a stem and leaf plo.t retains mo.re info.rmatio.n from the data than the his-
to.gram and is particularly suited fo.r the display of small to mo.derate-sized
data sets.



Fig. 1 is a stem and leaf plot of 48 measurements of the isotopic ratio
of 79Bromine to 81Bromine. Values of these 48 data points , listed in Table
, range from 1.0261 to 1.0305, or 261 to 305 after coding. The leaves .are

the last digits of the data values , 0 to 9. The stems are 26 , 27 , 28, 29 , and
30. Thus 261 is split into two parts , plotted as 26 11. In this case , because
of the heavy concentration of values in stems 28 and 29 , two lines are given
to each stem, with leaves 0 to 4 on the first line , and 5 to 9 on the second.
Stems are shown on the left side of the vertical line and individual leaves on
the right side. There is no need for a separate table of data values - they
are all shown in the plot!

The plot shows .a slight skew towards lower values. The smallest value
separates from the next by 0. 7 units. Is that an outlier? These data will be
examined again later.

26.

27.

28.

29.

30.

034

00334
566678889
001233344444
5666678999
0022

Fig. 1. Stem and leaf plot. 48 values of isotopic ratios, bromine (79/81).
Unit = (Y -1.0) x 10', thus 26/1= 1.0261.

Table 1. y- Ratios 79/81 for reference sample

DETERMINATION I DETERMINATION II
Instrument #4 Instrument # 1 Instrument #4 Instrument #1

0292 1.0289 1.0296 1.0284
1.02. 1.0285 1.0293 0270
1.0298 1.0287 0302 1.0279
1.0302 1.0297 1.0305 1.0269

0294 1.0290 1.0288 1.0273
1.0296 1.0286 1.0294 1.0261
1.0293 1.0291 1.0299 1.0286
1.0295 1.0293 1.0290 1.0286
1.0300 1.0288 1.0296 1.0293

0297 1.0298 1.0299 1.0283
1.02. 1.0274 0299 1.0263

0294 1.0280 1.0300 1.0280
Ave. 029502 1.028792 1.029675 1.027683

00000086 00000041 00000024 00000069
00029 00064 00049 00083
00008 00018 00014 00024



Box Plot. Customarily, a batch of data is summarized by its average
and standard deviation. These two numerical values characterize a nor-

mal distribution , as explained in expression (2- 0). Certain features of the
data , e.g. , skewness and extreme values , are not reflected in the average and
standard deviation. The box plot (due also to Tukey) presents graphically
a five-number summary which , in many ca.ses , shows .more of the original
features of the batch of data then the two number summary.

To construct a box plot , the sample of numbers are first ordered from
the smallest to the largest , resulting in

(I), (2),... (n)'

U sing a set of rules , the median , m , the lower fourth Ft., and the upper

fourth Fu, are calculated. By definition , the int~rval (Fu - Ft.) contains half

of all data points. We note that m u, and Ft. are not disturbed by outliers.
The interval (Fu Ft.) is called the fourth spread. The lower cutoff limit

Ft. 1.5(Fu Ft.)

and the upper cutoff limit is

Fu 1.5(F Ft.).

A "box" is then constructed between Pt. and u, with the median line
dividing the box into two parts. Two tails from the ends of the box extend
to Z (I) and Zen) respectively. If the tails exceed the cutoff limits , the cutoff
limits are also marked.

From a box plot one can see certain prominent features of a batch of
data:

1. Location - the median, and whether it is in the middle of the box.

2. Spread - The fourth spread (50 percent of data): - lower and upper
cut off limits (99.3 percent of the data will be in the interval if the
distribution is normal and the data set is large).

3. Symmetry/skewness - equal or different tail lengths.

4. Outlying data points - suspected outliers.



The 48 measurements of isotopic ratio bromine (79/81) shown in Fig. 1
were actually made on two instruments , with 24 measurements each. Box
plots for instrument instrument II, and for both instruments ate shown in
Fig. 2.
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FIg. 2. Box plot of isotopic ratio, bromine (79/91).
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The five numbersumroary for the 48 data point is , for the combined data:

Smallest:

Median 

Lower Fourth Xl:

Upper Follrth 

Largest: (n)

261

(n + 1)/2 = (48 + 1)/2 = 24.

(m) if m is an integer;
(M) + Z (M+l))/2 if not;

where is the largest integer
not exceeding m.
(291 + 292)/2 = 291.5

(M + 1)/2 = (24 + 1)/2 = 12.

(i) if 
is an integer;

(L) = z(L + 1))/2 if not,
where is the largest integer
not exceeding 

(284 + 285)/2 = 284.

+ 1 - = 49 ~ 12.5 = 36.

(u) if is an integer;

(U) + z(U+l)J/2 ifnot,

where is the largest integer
not exceeding 

(296 + 296)/2 = 296

305



Box plots for instruments I and II are similarly constructed. It seems
apparent from these two plots that (a) there was a difference between the
results for these two instruments , and (b) the precision of instrument II is
better than that of instrument I. The lowest value of instrument I, 261 , is

less than the lower cutoff for the plot of the combined data, but it does not
fall below the lower cutoff for instrument I alone. As an exercise, think of
why this is the case.

Box plots can be used to compare several batches of data .effectively
and easily. Fig. 3 is a box plot of the amount of magnesium in different
parts of a long alloy rod. The specimen number represents the distance , in
meters , from the edge of the 100 meter rod to the place where the specimen
was taken. Ten determinations were made at the selected locations for each
specimen. One outlier appears obvious; there'is also a mild indication of
decreasing content of magnesium along the rod. -

Variations of box plots are giyen in 13) and (4).
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FIg. 3. Magnesium content of specimens taken.

Plots for Checking on Models and Assumptions

In making measurements , we may consider that each measurement is
made up of two parts , one fixed and one variable, Le.

Measurement = fixed part + variable part

, in other words

Data = model + error.

We use measured data to estimate the fixed part , (the Mean, for ex-

ample), and use the variable part (perhapssununarized by the standard
deviation) to assess the goodness of our estimate.



Residuals. Let the ith data point be denoted by Yi, let the fixed part
be a constant and let the random error be (;i as used in equation (2- 19).
Then

Yi (;i, i=1,

,...

IT we use the method of least squares to estimate m, the resulting esti-
mate is

m=y= LyiJn

or the average of all measurements.
The ith residual Ti, is defined as the difference between the ith data

point and the fitted constant, Le. 

' '

Ti Yi 

In general, the fixed part can be a function of another variable (or
more than one variable). Then the model is

Yi (zd + (;i

and the ith residual is defined as

Ti Yi F(zd,

where F( Zi) is the value ofthe function computed with the fitted parameters.
IT the relationship between and is linear as in (2- 21), then Ti 

Yi 

(a bzd where and are the intercept and the slope of the fitted straight
line , respectively.

When, as in calibration work, the values of F(Zi) are frequently consid-

ered to be known, the differences between measured values and known values
will be denoted di, the i th deviation, and can be used for plots instead of
residuals.

Adequacy of Model. Following is a discussion of some of the issues
involved in checking the adequacy of models and assumptions. For each
issue, pertinent graphical techniques involving residuals or deviations are
presented.

In calibrating a load cell, known deadweights are added in sequence and
the deflf:'ctions are read after each additional load. The deflections are plot-
ted against Joads in Fig. 4. A straight line model looks plausible , Le.

(deflection d = bI (loadd.

A line is fitted by the method of least squares and the residuals from the
fit are plotted in Fig. 5. The parabolic curve suggests that this model is
inadequate , and that a second degree equation might fit better:

(deflectiond = bI (loadi) + b2(loadd2



f--,-

1.5

'-'-

003

002 

001 

(I) 

0:(

;S~ 001 ~

(/)

0:: ~
O02 ~

003 -

004 -

~0. 005

LOAD CELL CALIBRATION

100 200 300150

LOAD

250

Ag. 4. Plot of deflection vS load.

LOAD CELL CALIBRATION

X X XX ~ 

250150

LOAD

200100 300

Fig. 5. Plot of residuals after linear fit.



This is done and the residuals from this second degree model are plot-
ted against loads, resulting in Fig. 6. These residuals look random, yet a
pattern may still be discerned upon close inspection. These patterns can
be investigated to see if they are peculiar to this individual load cell, or are
common to all load cells of similar design, or to all load cells.

Uncertainties based on residuals resulting from an inadequate model
could be incorrect and misleading.
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Fig. 6. Plot of residuals after quadratic fit.

Testing of Underlying Assumptions. In equation (2- 19),

Tn + f:

the assumptions are made that f: represents the random error (normal) and
has a limiting mean zero and a standard deviation CT. In many measurement
situations , these .assumptions are approximately true. Departures from these
assumptions , however, would invalidate our model and our assessment of
uncertainties. Residual plots help in detecting any unacceptable .departures
from these assumptions.

Residuals from a straight line fit of measured depths of weld defects (ra"
diographic method) to known depths (actually measured) are plotted against
the known depths in Fig. 7. The increase in variability with depths of de-
fects is apparent from the figure. Hence the assumption of constant (J over
the range of F(;z:) is violated. If the variability of residuals is proportional
to depth , fitting of In(yd against known depths is .suggested by this plot.

The assumption that errors are normally distributed may be checked
by doing a normal probability plot of the residuals. If the distribution is
approximately normal , the plot should show a linear relationship. Curvature
in the plot provides evidence that the distribution of errors is other than
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normal. Fig. 8 is a normal probability plot of the residuals in Fig. 6
showing some evidence of depart ure from normality. Note the change in
slope in the middle range.

Inspection of normal probability plot s is not an easy job , however , unless

the curvature is substantial. Frequently symmetry of the distribution of



errors is of main concern. Then a stem and leaf plot of data or residuals
serves the purpose just as well as , if not better than , a normal probability
plot. See , for example , Fig. 1.

Stability of a Measurement Sequence. It is a practice of most
experimenters to plot the results of each run in sequence to check whether
the measurements are stable over runs. The run- sequence plot differs from
control charts in that no formal rules are used for action. The stability of a
measurement process depends on many factors that are recorded but are not
considered in the model because their effects are thought to be negligible.

Plots of residuals versus days , sets, instruments , operators , tempera-
tures , humidities , etc. , may be used to check whether effects of these factors
are indeed negligible. Shifts in levels between days or instruments (see Fig.
2), trends over time , and dependence on en~i~onmental conditions are easily
seen from a plot of residuals versus such factors.

In calibration work , frequently the values of standards are considered to
be known. The differences between measured values and known values may
be used for a plot instead of residuals.

Figs. 9, 10, and 11 are multi~trace plots of results from three labo-
ratories of measuring linewidth standards using different optical imaging
methods. The difference of 10 measured line widths from NBS values are
plotted against NBS values for 7 days. It is apparent that measurements
made on day 5 were out of control in Fig. 9. Fig. 10 shows a downward
trend of differences with increasing line widths; Fig. 11 shows three signifi-
cant outliers. These plots could be of help to those laboratories in 10caHng
and correcting causes of these anomalies. Fig. 12 plots the results of cal-
ibration of standard watt- hour meters from 1978 to 1982. It is evident
that the variability of results at one time , represented by (discussed un-
der Component of Variance Between Groups, p. 19), does not reflect the
variability over a period of time, represented by Ub (discussed in the same
section). Hence , three measurements every three months would yield bett.
variability information than , say, twelve measurements a year apart.
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Concluding Remarks

About 25 years ago , John W. Tukey pioneered "Exploratory Data Anal-
ysis" (lJ, and developed methods to probe for information that is present in
data, prior to the application of conventional statistical techniques. Natu-
rally graphs .and plots become one of the indispensable tools. Some of these
techniques , such as stem and leaf plots , box plots , and residual plots , are
briefly described in the above paragraphs. References (lJ through l5J cover
most of the recent work done in this area. Reference l7J gives an up- to-date
bibliography on Statistical Graphics.

Many of the examples used were obtained through the use of DATA-
PLOT (6J. I wish to express my thanks to Dr. J. J. Filliben , developer of
this software system. Thanks are also due to M. Carroll Croarkin for the use
of Figs. 9 thru 12 , Susannah Schiller for Figs. 2 and 3 and Shirley Bremer
for editing and typesetting.
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